
At Home and yet Public
-Shared Charging Infrastructure in Urban Areas-

Bachelor Thesis

by

Etienne Wiemann
Matriculation number: 2103253

At the Department of Economics and Management

Digital Service Innovation (DSI)

Karlsruhe Service Research Institute (KSRI) &

Institute of Information Systems and Marketing (IISM)

Reviewer: Prof. Dr. rer. pol. Christof Weinhardt

Second Reviewer: Prof. Dr. Alexander Maedche

Advisor: Marc Schmidt, M.Sc.

Date of Submission: 29.01.2022

KIT – The Research University in the Helmholtz Association www.kit.edu





CONTENTS iv

Contents

Acronyms v
0 Abstract v
List of Figures vi
List of Tables vii
1 Introduction 1

1.1 What is the Missing Link? . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objective of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Data and Methodology 7
2.1 Description of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Methodology of Clustering . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Methodology of Matching . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Beneficial Characteristics . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Calculating Matched Groups . . . . . . . . . . . . . . . . . . . 13

2.4 Methodology of Charging Simulation . . . . . . . . . . . . . . . . . . 16
2.4.1 Setup and Assumptions . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Charging Simulation . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Charging Strategies . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Results 21
3.1 Resulting Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Cluster1: high frequent commuter (medium) . . . . . . . . . . 23
3.1.2 Cluster2: local workday commuter (short) . . . . . . . . . . . 23
3.1.3 Cluster3: weekend free-time trips (medium) . . . . . . . . . . 24
3.1.4 Cluster4: frequent local errands (medium) . . . . . . . . . . . 24
3.1.5 Cluster5: weekend high mileage (long) . . . . . . . . . . . . . 25
3.1.6 Cluster6: high mileage driver (very long) . . . . . . . . . . . . 26
3.1.7 Cluster7: seldom at home (medium) . . . . . . . . . . . . . . 26
3.1.8 Relationship and Analysis . . . . . . . . . . . . . . . . . . . . 28

3.2 Resulting Matched Groups . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Matched Group A . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Matched Group B . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Matched Group C . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Matched Group D . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Matched Group E . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.6 Matched Group F . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.7 Matched Group G . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.8 Similarities and Analysis . . . . . . . . . . . . . . . . . . . . . 34

3.3 Results of Charging Simulation . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Comparison of Matched Group A . . . . . . . . . . . . . . . . 37
3.3.2 Comparison of Matched Group B . . . . . . . . . . . . . . . . 38
3.3.3 Comparison of Matched Group C, D . . . . . . . . . . . . . . 40
3.3.4 Comparison of Matched Group E . . . . . . . . . . . . . . . . 42
3.3.5 Comparison of Matched Group F . . . . . . . . . . . . . . . . 43
3.3.6 Comparison of Matched Group G . . . . . . . . . . . . . . . . 45
3.3.7 Similarities and Summary . . . . . . . . . . . . . . . . . . . . 46

4 Discussion of Results 50
4.1 Principal Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Limitations and Future Research . . . . . . . . . . . . . . . . . . . . 58

5 Conclusions and Outlook 60
6 Appendix 63
7 Declaration 65



0 ABSTRACT v

Acronyms

Electric Vehicle (EV)

German Mobility Panel (MOP)

First-In-First-Served (FIFS)

Highest-Mileage (HIMI)

Shortest-Timehome (SHTH)

0 Abstract

In a fight against rising global temperatures, politics count on electric vehicle (EV)

potentials to reduce emissions. However, the increasing charging demand for these

newly introduced EVs is not satisfied in predominantly urban areas (Hardinghaus

et al., 2019). City planners are challenged to expand the needed charging infrastruc-

ture to meet the demand and rely mainly on public charging stations as the standard

solution (Wagner et al., 2014; Adenaw and Lienkamp, 2020). Nevertheless, only 3-

8% of all monitored charging events take place at a public charging station (Bruce

et al., 2012). Charging at home/work remains the preferred solution (Jabeen et al.,

2013). Although EVs do not charge at a private charging station the majority of

the time (Lucas et al., 2019), which leaves unused charging slots, while others can

not access a charging station. This study combines these two phenomena and shares

the unused charging slots within a selected charging collective to create a beneficial

shared charging concept for both sides. Driving behaviors from 534 households in

urban areas from the county Baden-Württemberg of Germany were utilized for this

assessment. To take advantage of the opportunity of shared charging, this work relies

on identifying similar driving behaviors along with establishing beneficial charging

collectives through a self-created matching process. The resulting charging collec-

tives are then tested under three different charging strategies to obtain knowledge

about their technical feasibility. In the framework of this thesis, scientific proof is

found that sharing a charging station within a large charging collective is indeed

possible in urban areas. Hence, demonstrating an alternative approach through the

creation of fixed charging collectives for the expansion of charging infrastructure.
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1 Introduction

Human caused fossil fuel combustion remains the single largest influence on the

climate (Quadrelli and Peterson, 2007). Over the course of the past two decades,

the global community has acknowledged the pressing need to collectively address

and reduce the CO2 emissions caused by fuel combustion (Quadrelli and Peterson,

2007). Germany, especially, is responsible for a very high share of 20% of its energy-

related CO2 emissions caused by the transport sector (Pehnt, 2020). Since 184

states declared the environmental protection to international law in the Paris Agree-

ment (Agreement, 2015), Germany responses with specific laws to reduce the CO2-

emissions for the transport sector (Bundesministerium für Umwelt, 2020). These

policies and climate strategies consider the electric mobility as a promising tech-

nology to achieve national climate goals. In detail, EV reduce local emissions in

especially urban areas (Richardson, 2013; Perujo et al., 2011) alongside the benefi-

cial effect of shifting emissions from the transport sector into the electricity sector

(Pehnt, 2020). Moreover, (Richardson, 2013) concludes that coupling this effect with

a higher integration of renewable energies could reduce the CO2-emissions of mul-

tiple sectors. These promising benefits together with the newly established policies

might have pushed innovation and fundamental rethinking of modern mobility into

the automobile industry to invent viable approaches for the future. Volkswagen, as

a global player, shows that the automobile sector strives for innovative ideas in order

to achieve the lawful emission limits for their product portfolio. They radically re-

structure business segments purely to produce EVs. This outlook is so predominant

that, the strategy ”TRANSFORM 2025+” to electrify the whole product portfolio is

forced to pace with an additional strategy ”ACCELERATE” in order to stay inter-

national competitive (Newsroom, 2021). In aspect of the specification of EV, local

areas are considered to be the best suiting environments to use electric car mobility

when focusing on daily needed short range Nobis and Kuhnimhof (2018). Nonethe-

less, the supporting charging infrastructure is underdevelopment, which raises major

concerns for the large-scale deployment of EVs (Deb et al., 2018). In detail, the inte-

gration of the promising EV along with their multiple benefits encounter a complex

mix of obstacles that cause range anxieties (Morganti and Browne, 2018). Some are

identified to have missing economical incentives for the high investment costs for

EV (Thiel et al., 2010; Bühne et al., 2015). However, the most significant obstacle

is the missing access to charging infrastructure, which sufficient access reduces the

cause of range anxieties upon the existing and the potential EV-owners (Neubauer

and Wood, 2014). Furthermore, these obstacles have the possibility to additionally

inhibit a larger market penetration for EVs, according to Steinhilber et al. (2013).

Therefore researching solutions for the future charging infrastructure is a crucial

step to reach the set climate goals.
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1.1 What is the Missing Link?

To reduce the increasing charging demand, multiple debates are raised to discuss

mobility needs in European metropolitan areas through the expansion of public

charging stations (Frade et al., 2011; Hardinghaus et al., 2019; Wagner et al., 2014).

In Berlin, rising demand for charging opportunities in especially urban areas is ob-

served by Hardinghaus et al. (2019). The same issue faces the city of Lisbon (Frade

et al., 2011). The author discovers that cities, which were mainly developed before

car mobility, lack parking spaces for the general public. Therefore they rely strictly

on the expansion of centralized public charging stations. Except charging at public

places is the least favorite, as shown in the British project CABLED, where only

3-8% of the monitored charging events took place at public charging stations (Bruce

et al., 2012). Furthermore, the optimal distribution of public charging stations, to-

gether with local demand, pose high realisation obstacles for city planners (Wagner

et al., 2014; Adenaw and Lienkamp, 2020). Relying on the centralized approach

seems inadequate due to its minor acceptance. The availability of private parking

spaces and, therefore, the installation of wallboxes is a crucial factor that influences

the readiness to purchase EVs (Patt et al., 2019). It has been shown that EVs park

mostly in private parking spaces to use their private charging stations (Nobis and

Kuhnimhof, 2018). Above all, households with the ability to install a private charg-

ing station, which is also called a wallbox, are twice more likely to purchase EVs,

according to Patt et al. (2019). This is probably why nearly 90% of all charging

events took place at a private charging station at home (Österreich, 2020). However,

the majority of urban residents live in collective buildings without private parking

spaces and face hard limitations to install adequate private charging stations, which

is noticed by Petit and Hennebel (2019). These challenges can vary from economical

to technical nature (Steinhilber et al., 2013). On the economic side, the additional

cost of EVs and their longer payback periods, compared to conventional combustion

vehicles, will stay an issue for the near future (Thiel et al., 2010). Examples of

technical challenges are parking garages, where constructions are often hindered by

regulations. Further limitations are the absence of private parking space, where ur-

ban residents often compete in a first come first serve environment when it comes to

their preferred parking space. Solutions for these urban residents living in collective

buildings must be proposed (Petit and Hennebel, 2019). Simultaneously, charging at

home/work remains the predominant solution (Jabeen et al., 2013), although EVs

spend more than half of their time at their charging station without charging (Lucas

et al., 2019). In this regard, could these two phenomena, that a high charging de-

mand is present in urban areas and that wallbox-owner have unused charging times,

be beneficially united?
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1.2 Literature Review

Shared charging concepts seem to be the solution. They potentially combine the

comfort of charging nearby or at home and additionally create financial benefits by

splitting costs. Above all, they can satisfy the charging demand of larger groups and

thus help to reduce the increasing charging demand in urban areas. Nevertheless, the

topic of sharing concepts is sparely debated in the scientific community. Reviewed

studies apply shared charging in two different approaches.

Some cover mileage by sharing EV fleets. Their concept is based on having an

accessible EV fleet for a community. EVs that are not used are charged in advance

to provide the needed mileage. Song et al. (2019) provides an operating and planning

concept for such communities in the residential and business sector. Moreover, Jia

and Wu (2021) provides a complex scheduling algorithm to solve the scheduling

issue that occurs by integrating renewable energy sources to charge the shared EV

fleet. Further ideas to solve how EVs get to the charging stations utilizes current

innovation of the upcoming autonomous cars (Leiding, 2021; Zhang and Chen, 2020).

These EVs optimize their unused time for charging events. According to Roni et al.

(2019), the limiting factor of these concepts is the accessible charging infrastructure,

in which the author assessed the downtime of free-floating shared EV-fleets upon

different charging stations allocations.

Others utilize the benefit of a shared charging station. To clarify this approach, Aich-

maier and Ludwig (2015) describe an example demonstrating how nearby neighbours

could share charging infrastructure. Their so-called ”intelligence wallbox” is set to

overcome local barriers and achieve national to supranational goals. Research papers

have been published in a large span from local to national applications. Starting at

the top of this span, Koç et al. (2019) examined their extended EV routing problem

and considered investment costs for additional charging infrastructure to minimize

opening costs and drivers costs. In addition to coordinating larger-scale groups Chen

et al. (2022), introduced hierarchical scheduling on shared charging stations to meet

the charging demands of the EVs. The author concluded that estimating charging

time and coordinating charging periods show extensive potential. Others achieved

to reduce the waiting and charging time significantly through a shared charging

concept (Wang et al., 2019). Wang et al. (2019) utilized the heterogeneous patterns

of large groups, which consists of e-taxis and e-buses. Their different mobility and

charging patterns allowed to schedule their charging slots through a fixed timetable.

Concepts that focus more on the residential sector and the direct benefit of indi-

viduals in a charging community are those of Azarova et al. (2020) and Kostansek

(2021). Kostansek (2021) analyzed already existing private charging stations in the

county of Salzburg in Austria to take care of people with no installation possibili-
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ties for wallboxes at their residential buildings. The author mainly dealt with the

idea of utilizing shared charging as an additional supply to satisfy charging demand

and analyzed the potential. These shared charging stations have no fixed member-

ship and work of the principle that the general public accesses free charging slots

(Kostansek, 2021). The author concluded that giving broader access to an already

existing charging infrastructure can, in the long term, expand the charging infras-

tructure through additional participation of the citizens. All these charging stations

are within walking distance and show the great potential of making nearby charging

infrastructure more accessible.

Similarly, Azarova et al. (2020) assessed a business model that combines the advan-

tages of private charging with the cost savings of joint purchase between households

in Austria. The author concluded that understanding the preferences of individuals

is important to configure the community financed charging concept. These prefer-

ences are identified by a survey and only reflect self-aware preferences of charging.

Moreover, participants are clustered by income together with ownership of an EV.

Creating a business model, which uses the concept of a community-owned charging

station, is plausible for the author. Important factors are the relationship within a

group alongside the size of the community. The reviewed literature provides ideas

for sharing concepts with different set goals to support electric mobility. The inter-

esting possibilities of sharing concepts on a local or global scope inspire this work.

However, the presented sharing concepts deal more with the beforehand assumed

charging collective and their resulting potential benefits rather than providing the

detailed creation of a charging collective. This study contributes to the configuration

of the charging community by focusing on the driving behavior to bridge the gap in

the technical creation and feasibility of shared charging infrastructure. To get there,

the work adds to the business model of Azarova et al. (2020) and identifies driving

behavior in order to configure beneficial charging communities in nearby areas. Al-

though Kostansek (2021) does not assign citizens directly to charging stations, the

approach of this thesis could improve the author’s idea through sharing the charging

infrastructure more efficiently. The other parts of this work add to maximising the

size of the charging community to possibly utilizes higher participant number in the

business model of Azarova et al. (2020) without loss in mobility. Furthermore, this

thesis gives additional information if the approach to utilize heterogeneous driving

patterns in the public transport sector can be implemented in the residential sector,

which contributes to Wang et al. (2019).

Therefore, this thesis fills the gap in the literature on how a shared concept for

a charging community is technically implemented while also identifying beneficial

configurations of the charging communities. For this approach, current technical

boundaries of private charging stations ,respectively, wallboxes are considered.
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1.3 Objective of Research

The subject area of this thesis is located in the research field of sharing wallboxes

within communities or, respectively, collectives in urban areas. Apart from other

studies in this field, this thesis focuses on the challenging part of creating beneficial

charging collectives and assessing the technical feasibility of a shared charging con-

cept within a charging collective. In general, examining innovative ways to provide

the comfort and availability of charging at home solutions for a greater number of

people through a shared charging concept. This concept creates a nearby accessible

charging station for the founded charging collective. In this point, the work differs

from Kostansek (2021), because the shared charging concept of this work creates

fixed charging groups and does not examine nearby accessible charging stations for

the charging collective. Apart from this, the elaboration of this thesis aims to add

to the author by improving the shared charging concept through the matching of

specific driving behaviors. These resulting advantages give broader access to wall-

boxes, thus expanding the accessible charging infrastructure on a larger scale. Each

individual willingly participating in the sharing concept aspires to the same goals,

hence why the charging community is called a charging collective. Such a charging

collective is sketched in Figure 1. It is only focused on solely battery-powered electric

vehicles to have clear causes on the incurring charging demand, which is not granted

by other types of electric vehicles, for example plug-in electric vehicles that also rely

on fossil fuels. Therefore the assessment of the technical feasibility has a clear cause.

On the economic side, establishing a business model is not a part of this thesis. The

approach to split costs under larger numbers of participants is the only reducing

factor of investment and operation cost that is taken. This is done accordingly to

Azarova et al. (2020), in which charging costs are divided between more partici-

pants for the installation and operation of the wallbox. Kostansek (2021) adds that

the wallbox provider could even demand financial compensation for the use of the

wallbox. Therefore, relieving wallbox-owners from high investment and operation

expenses and simultaneously increasing financial incentive by splitting costs to form

a suitable solution for the economic barrier of electric mobility. On the technical

side, obtaining valuable information on the feasibility of sharing a wallbox in a col-

lective is the core element of this study. In detail, the thesis assesses the following

steps in order to acquire the needed information to fill the gap in the literature. The

first step is understanding the driving behavior in urban areas through a clustering

of the data set. In this regard, the following research question is answered.

• Which distinguishable driving behaviors exist in the scope of the data set?

Other than Azarova et al. (2020), this thesis uses real-world mobility data rather

than inspecting socio-economic data. The resulting clusters of the clustering create
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the basis for this elaboration. Secondly, different charging collectives are established

with distinguishable properties. One utilizes a matching process in order to merge

beneficial behaviors to multiple matched groups. The other one randomly selects

individuals from the data set to form groups. Furthermore, these groups are tested

on three charging strategies. Key performance indicators for the charging simula-

tions are assessed to acquire precise information about the following two research

questions.

• Is the matching of charging collectives more beneficial in terms of charged

mileage of a wallbox than randomly chosen collectives?

• To what extent can a collective of households share a charging station without

significantly influencing their daily driving behavior?

Hence why, this thesis creates the scientific-technical basis to institute collectively

shared charging infrastructure in urban areas with the goal to satisfy charging de-

mand and to overcome economic together with technical barriers of electric mobility.

Figure 1: Visualized charging collective.
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2 Data and Methodology

This section is separated into four parts and constructs the methodology of the

thesis. First, the utilized data set is described in detail. Secondly, the clustering

methodology is described extensively along with the selected segmentation variables.

Thirdly, the matching procedure is presented to merge the in advance identified driv-

ing behaviors into matched groups. Finally, three charging strategies are simulated

on the matched groups and the randomly selected groups to obtain valuable infor-

mation about their performances and beneficial properties.

2.1 Description of Data

Table 1: Calculated Variables from MOP.

Calculated Variables Description

Timehome Parking duration at home

Tripduration Car trip duration

Timeelsewhere Parking duration elsewhere (not at home)

Tripcount Total number of trips per week

Roundtripcount Total number of round trips per week

Mileage/Trip Driven mileage per trip

avgStart Average start time of round trips

avgEnd Average end time of round trips

The used data is from the German Mobility Panel (IFV, 2018), starting in the

year 2017 and finishing in the year 2018. The mobility data reflects the driving

behavior of German citizens. Each mobility event in the data set is collected through

a questionnaire. The filtered data set only includes mobility data by car from

households, which are primarily located in highly populated urban areas in Baden-

Württemberg. The mobility by car is described by driving events from one specific

week with seven consecutive days by a household. Keeping in mind that this study

aims to solve car mobility needs of households, mobility data from individuals of one

household is summarized into their unique household-ID with different individual

identification numbers. Subsequently, the data includes 534 households with 874

participants. In order to make a future analysis clearer and more understandable

the trip data of the following seven days, which were raised on different dates, is

modified to fit into one week without risking corruption of the data. Additional

information to supplement the mobility data is further provided by other data sets

of the MOP. These give access to the purpose of each trip as well as the socio-

economic details of the household and individuals. The later examined variables are
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calculated by using existing information from the questionnaire. Main elements for

describing parking and driving events are summarized by the following variables in

Table 1.
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2.2 Methodology of Clustering

In this section, the algorithm-supported clustering takes place. To reveal hidden

relations between the high sum of data points, the programming language Python

is used. The goal is to find households with similar driving behavior and assign

them to the same cluster center by analysing their characteristics in the scope of the

selected segmentation variables. The approach of the clustering is based on the idea

that driving behaviors are measured by the selected segmentation variables (Halim,

2016). To carry on doing so, it is assumed that the examined driving events over a

full week represent the everyday driving events. Hence why, the selected variables

are assumed to provide an accurate measurement in the limits of the used data set.

Given that the trip data had been set by conventional cars, it is assumed that vehicle

owners use their EV in the same way.

Being mostly inspired by the approach of Sodenkamp et al. (2019) and partly in-

spired by the selection of the clustering algorithm from Halim (2016), the clustering

of this study shares the trusted procedure to identify different driving behaviors

from a data set by choosing a similar methodology. Both authors rely on different

inspected data specifications and goals compared to this study. Starting with the

included variables, the most important properties of the driving behavior resemble

the segmentation variables. Sodenkamp et al. (2019) chose specific variables for

their clustering. These are divided into variables that assess the distance of trips,

the number of trips and the driven speed. Variables that capture the duration of

driving activities are the parking duration and the trip duration. The leftovers are

calculated ratios between the already mentioned summarized variables. Given that

the used data set for this thesis does not have the same data base, the selection for

this thesis is altered. Nevertheless, the selection process is orientated towards the

research of Sodenkamp et al. (2019).

An inspection of the data set showed significant alteration in the variables on week-

ends compared to workdays. That is why variables are temporally separated into

workday and weekend times.

The first variable describes the mileage per home-to-home round trips (Mileage/Trip).

This is later useful to estimate the charging duration, since every driven kilometer

has to be recharged. The second variable is the time at home duration (Timehome),

also split into workdays and weekends. It gives important input on the possibility of

postponing charging events through the fact that individuals with a long spent time

at home have more possibilities to schedule their charging events. The contrary to

this variable is the time spent elsewhere (Timeelsewhere), which includes the time

that is not spent at home or during driving. The last inspected duration gives valu-

able information about the actual driving time(Tripduration). Continuing to the
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remaining segmentation variables, which reflect the frequency of trips (Tripcount,

Roundtripcount) alongside timestamps (avgStart, avgEnd) for driving events. Each

calculated variable is shown in Table 1.

In order to analyse correlations between the sixteen variables, the Pearsons-Bravais-

Correlation coefficient is used. Due to strong correlations between variables, the

following five are not further considered in the clustering. The said five canceled

variables are listed. The first is the Roundtripcount on workdays (correlated with the

trip count on workdays, coefficient 0.904) together with the Roundtripcount on the

weekend (correlated with the Tripcount on weekends, coefficient 0.900). Secondly,

the avgEnd of trips during the weekend is removed (correlated with the avgStart

at the weekend, coefficient -0.855). Lastly, the Timeelsewhere during workdays

(correlated with Timehome during workdays, coefficient -0.987) and Timeelsewhere

on weekends (correlated with Timehome on the weekend, coefficient -0.985) are

excluded. Altogether eleven segmentation variables are picked and are displayed in

Table 2.

Table 2: Segmentation variables.

workday Segmentation variables weekend Segmentation variables

workday Tripduration weekend Tripduration

workday Timehome weekend Timehome

workday Tripcount weekend Tripcount

workday Mileage/trip weekend Mileage/trip

workday avgStart weekend avgStart

workday avgEnd

Each household is described through eleven segmentation variables. Focusing on the

whole data set, cloud-like properties are expected. Since the exact shape is unknown

the clustering needs to rely on a robust method. Hence why, the Kmeans algorithm,

firstly proposed by MacQueen, serves as the core element of the clustering process

(Jigui et al., 2008). Discovered shortcomings in efficiency of the Kmeans algorithm

by Na et al. (2010) do not influence smaller data sets, which complies with the

used data set. By choosing Kmeans, the clustering benefits from a non-biased

selection of cluster centers along with the robustness of the algorithm when applied

on different shapes of data sets. According to (Halim, 2016) clustering using Kmeans

provides similar values in comparison to other clustering techniques. Therefore the

selection of K-means is the right choice considering the properties of the data set.

The Kmeans-algorithm works on the principle to assign, in this case, households

to their most similar cluster center. To measure their similarities, the distance

between characteristics in their driving behavior is calculated through the Euclidean

Distance. As an outcome, each household is assigned to a specific cluster center
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together with aspiring a high distinction between the cluster center’s properties.

However, the number of cluster centers has to be defined in the upfront. Therefore,

the first method for choosing the appropriate number of clusters in the Kmeans

algorithm is the Silhouette Method (Rousseeuw, 1987). It measures how well data

points are assigned to their cluster center by comparing distances to other data

points. The silhouette coefficient ranges between [-1,1], with a high value indicating

high distinguishable clusters. Additionally, the decision for the amount of cluster

center is further supported by the Elbow Method (Bholowalia and Kumar, 2014),

which illustrates distinguishing levels of the data set on an interval consistent of

cluster center amounts. Moreover, the agglomerate hierarchical grouping, proposed

by Jr. (1963), with the Ward’s Method specification, is chosen to clarify relationships

between the identified clusters. The Ward-linkage between clusters is based on their

minimal collective growth of the Error Sum of Squares, thus creating merged clusters

with minimal variance. This specification is used to understand relations between

the resulting clusters and supports a natural interpretation of the data set.
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2.3 Methodology of Matching

This section aims to utilize the full potential of sharing a wallbox. The idea behind

this is to find a cluster with complementary mobility behaviors and merge them.

This is not only done to create a smooth distribution of mileage per day. It si-

multaneously provides the possibility to cover higher mileage upon larger charging

collectives. A somewhat similar approach was taken by Wang et al. (2019). The

author utilized known peaks of charging in shared limited charging infrastructure

and allocated these more evenly. For doing so, scheduling the heterogeneous arriv-

ing and departing times of e-Bus and e-Taxi fleets was crucial. The programming

language Python is applied to create and execute the matching process.

2.3.1 Beneficial Characteristics

It is mandatory that the matched cluster groups fulfill certain characteristics to

reach the goals mentioned above. This part gives a general estimation to under-

stand the aspired beneficial features of matched groups in contrast to randomly

selected groups. Randomly selected groups have the probability not to suit their

appointed participants at all. For example, a randomly selected group consisting

only of weekend drivers ends in extremely high demand for charging on the weekend

and a mainly unused charging station on workdays. This creates the risk of exceed-

ing the possible charging capacity in peak times along with rock-bottom charging

demand on other days. Controlling this risk by merging complementary working

participants into groups is the main goal.

This way, two key variables which influence charging are explored. The first key

impact on charging duration is the mileage of the home-to-home-round trip. Here

described as average kilometers per day that need to be charged after each round trip.

A beneficial match is characterised in this scope by an evenly distributed mileage

per day. This prevents daily peaks alongside an overall smoother occupancy of the

assigned charging station. A simple example for such a complementarily working

matched group is a match consisting of a weekend driver and a workday driver.

Ideally, they substitute their mileage temporally and thus, their usual charging

demand is covered by the wallbox.

The second important variable is the time spent at home (Timehome). This variable

determines not only the possibility of charging their needed mileage required for the

person’s next round trip, but it also serves as an indicator to postpone charging

events. Therefore, it functions as a matching factor because participants with a

higher Timehome elevate the average Timehome of the collective and vice versa.

Ensuring that the participants have a long enough Timehome is the second crucial
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consideration. The matching process finds a balance between a long enough time

spent at home and a smoothly distributed mileage per day. This distribution creates

the beneficial properties that this matching process pursuits. Thus, they achieve to

charge their needed mileage together with the advantage to split the costs. Creating

this without a significant loss in mileage and comfort for the individual is the critical

part, even more, when this concept is scaled up to multiple participants in a charging

collective.

2.3.2 Assumptions

Before the description of the matching starts, some assumptions are established.

Having limited processing capacity, this study is not able to choose the ideal ap-

proach to combine and assess each of the 874 participants driving events. Thus the

cluster center as the average specification of the clusters is utilized for the matching

process to solve the processing limitation. In order to do so, it is assumed that the

cluster centers represent the assigned households sufficiently and reflect the long-

term driving behavior. Therefore, the matching process is based upon the same

assumptions as the clustering process.

2.3.3 Calculating Matched Groups

This part is designed to solve the bipartite matching problem of participants with

different driving behaviors. To assure that the mileage of a matched group is the-

oretically charged, limits are generated. On the one hand, these limits result from

the technical boundaries of the used charging setup. As mentioned in the setup

assumption, one standard wallbox for home solutions with 11kW and one charging

cable is used as a charging station for the collective. With this setup, the daily theo-

retical upper limit of the charging capacity is calculated and results in 264kWh/day.

As stated, the data set has no information about possible EV specifications in bat-

tery capacity and consumption. Considering this, the average consumption of an

EV from Yuan et al. (2015) with 0.16kWh/km is used as the general basis of as-

sumption. Therefore one wallbox theoretically charges a maximum of 1650km per

day (11550km per week). Two limits ensure that the theoretical boundaries are re-

spected. The first upper limit (= 1650km/day) is the maximum chargeable mileage

that one wallbox outputs per day. Exceeding this upper limit makes charging with

11kW theoretically impossible. The second limit is the bottom limit (coefficient =

0.0145km−1). It guarantees that the collective, on average, spends enough time at

home for charging. The bottom limit is called Timehome/km-Ratio and is calcu-

lated by dividing the theoretically available Timehome (24h) by the maximal daily

chargeable mileage (1650km/24h). These two limits consider that the collective
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does not exceed the technical charging limits along with not surpassing the needed

Timehome for charging their mileage.

On the other hand, the matching algorithm needs to grant the quality of the matched

group by complying with the set standards in subsection 2.3.1. The variance of

mileage per day is the key decision variable to assess the mileage distribution to-

gether with the overall quality of the match. Low variances or relatively low standard

deviations of the collective in mileage per day are directly linked to a smooth mileage

distribution. The standard deviation is chosen to have a less complex interpretation

of the variable. Additionally, the occupancy in the percentage of a wallbox is calcu-

lated to provide a visual estimation. The occupancy results from dividing the time

one car is plugged into the wallbox per week with the maximum theoretical time per

week. It provides valuable information about the usage of the wallbox. Moreover, it

shows when the saturation is reached, in combination with the covered mileage. The

algorithm ensures that only the cluster center, which creates the lowest collective

standard deviation is added to the collective. This provides a beneficial match.

In conclusion, the set limits create the framework in which the inputted cluster

centers are selected according to the target function. This allows the merging of

larger groups with smaller standard deviations and thus is more helpful in creating

larger complementary charging collectives.

Starting the calculation of the matched groups, the following bullet list shows the

obeyed limits, the decision variable, and the target function of the matching algo-

rithm. The italic letter in Figure 2 shows where exactly these come into play.

1. Upper limit: maximum chargeable mileage per day <= 1650km/day;

2. Bottom limit: minimum Timehome/Km-Ratio per day <= 0.0145km−1;

3. Decision variable: collective standard deviation of mileage per day;

4. Target function: choose lowest collective standard deviation of mileage per

day;

The following Figure 2 on page 15 shows the decision-making process in the matching

process.
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Figure 2: Matching Process.

Applying this to the context of the shown matching diagram 2, the algorithm starts

with two sets. Set A consists of all cluster centers like that of set B. The only differ-

ence is that set B is repeatedly iterated and set A just one time. In each iteration

of the algorithm, the daily mileage is calculated to determine the joint standard

deviation of the first combination. This is done until set B is fully iterated on time.

From this point on, the algorithm picks the minimal joint deviation along with the

related cluster center from set B and adds it to the selected cluster center from set

A. This ensures that only matches with the lowest collective variance are created.

This smooths the mileage distribution by making use of possible complimentary

driving behaviors. This is repeated multiple times until the earlier specified lim-

its are reached. Then the matching process creates one matched group. This is

the starting point for the next cluster center in set A to iterate the process once

more. The matching process stops when every cluster center from set A is selected.

Thus the algorithm establishes larger groups by respecting technical limits alongside

merging beneficial complementary driving behaviors.
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2.4 Methodology of Charging Simulation

In this section, the vision of the study is directly tackled. A simulation is carried out

in order to assess the technical feasibility of the charging collective from an ex-post

perspective. The charging simulation is performed in the programming language

Python.

2.4.1 Setup and Assumptions

This part establishes the assumptions of the boundaries for the charging setup. In

general, this thesis considers mainly the technical feasibility and therefore assumes

that striving towards a larger group size increases the economic benefit of individ-

uals by splitting investment and operating costs. Furthermore, it is assumed, for

calculating necessity, that the EV is only charged at home for every round trip and

is described to be a battery-powered electric vehicle to have a closed charging model,

in which every driven kilometer is recharged at the wallbox. Thus every household

must have purchased an EV that can achieve their range per round trip. Since this

thesis assesses if mobility needs by car can be covered in shared charging infrastruc-

ture, the testing of charging strategies works independently from battery capacities.

To do so the driven mileage is used in an ex-post perspective to examine the fea-

sibility of the strategy. Hence why, this study is detached from the boundaries of

EV specifications and does not need an assumed battery capacity because solely the

driven mileage by the household is charged. The charging process starts instantly

and stays on the same performance level of 11kW. Thus, the charging setup is free

from external influences and works flawlessly. Additionally, the wallbox charges the

beforehand driven mileage in the simulation. The number of cars does not impact

the test by any means.

Figure 3: Charging Setup.

To address the expansion of charging stations in urban areas, the key element this

thesis utilizes is having the unhindered availability of the wallbox combined with
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the comfort of charging nearby. Hence this part describes the technical setup to

achieve the set goals. The collectively shared wallboxes need a designated location

to be installed. Locations as such can vary from privately owned parking spaces

to installation possibilities, which are provided by local authorities. Often existing

private charging infrastructure can already be used, according to Kostansek (2021).

Therefore, it is assumed that each collective has an easily accessible location to

install and operate a wallbox, which is assumed to be nearby the individuals of one

charging collective. The technical setup per testing group consists of a wallbox with

one charging cable and is sketched for the personal idea in section 3. Thus one EV

is charged with the full power of the wallbox. As stated above, the setup on the

technical side depends on the assumed 11kW performance of the wallbox together

with the consumption of 0.16 kWh/km (Yuan et al., 2015) of an EV to calculate

charging duration.

The setup is designed to ensure the comfort of the participants. The assigned charg-

ing strategy within the collective must cover the car mobility needs of the collective

in the first place, while simultaneously being comfortable for all individuals.

This study identifies two factors influencing the charging collective. The first is the

disturbing factors for people which have the possibility to install a wallbox at their

home or live closely. These are generated through the daily traffic of charging events

from the collective. To ensure the comfort of said people, some rules are established

in the charging process.

First of all, swapping the car between midnight and 6 am is allowed precisely one

time for an arriving EV and then declared resting time. This time frame remains

used because of the high potential in covering mileage during these six hours. An-

other disturbing factor is the high quantity of switching between charging events.

This affects the entire collective. For example, both the wallbox container and indi-

viduals who live close to a wallbox are disturbed by high charging traffic. Addition-

ally, individuals, which do not live directly at a wallbox, have to travel the distance

more often with the frequency of scheduled charging events increasing. Therefore,

the frequency of charging events is kept low through a minimal charging duration

of 2hours.

The other factor is the additional expenditure that participants need to endure to

get to the nearby wallboxes. Because of the charging strategy, participants are

sometimes required to plug or unplug their car when they are already at home.

This can often be done by arriving participants if the charging events are scheduled

seamlessly. To ensure similar comfort to that of a privately owned wallbox, a low

frequency of plugging events when no one is around is aspired.

Altogether, the minimal charging duration and the implementation of resting times

as well as the investigated quantity of unattended events for switching plugs, are
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implemented to strive for a higher comfort level of the collective. However, the

lost charging time, which results from keeping the comfort level, causes a trade-off

between covering mileage and ensuring the comfort of the collective.

2.4.2 Charging Simulation

The test conditions for each charging strategy are the same. It consists of a group

combination, which is selected from two different pools. The first pool stores the

matched groups are elaborated in part 2.3.3. Thus, the matched group is created

by rules set in advance in order to achieve a beneficial sharing of the wallbox. The

second pool contains the randomly selected groups. It reflects the approach that

random people meet each other and start sharing a wallbox without researching

their individual compatibility in the examined urban area. This creates a suitable

reference to evaluate if matching specific driving behaviors is more beneficial than

randomly creating charging collectives. Due to this, each matched group is sepa-

rately evaluated against the random pool. Every group is flexible in its group size

to test the influence of different group sizes. The investigated charging collectives

range from a minimum group size of three households to a maximum group size of

fifteen households, limited to household numbers that are multiples of three due to

computing capacity limitations.

Implementing charging strategies on our data set reveals multiple issues. One is

the yet limited range of EVs, which is why some trip distances are impossible to

travel with a singular charge when considering the trip back home. These trips

demand further charging during round trips in a real-world implementation. More

interesting is how these trips are considered in the later evaluation of the charging

strategy. Therefore each charging strategy has a set of variables to assess its quality.

Charging strategies must be suitable to satisfy the mobility needs of the examined

households in urban areas. It is, therefore, necessary to find charging strategies that

do not restrict everyday mobility in the first place. Hence why, the key performance

indicators for each charging strategy are prioritised and assessed in the following

order. The first variable is the overall covered mileage, which is the sole indicator

of an optimal charging station, therefore a high coverage is pursued. Charging

strategies are only considered suitable if they cover more than 90% of the driven

mileage. This assumption is based on Greaves et al. (2014). The author finds

that average distances below 60kilometers are easy to cover with a simple home

charging solution, which constitutes to 90% of the driven mileage. Thus, this sets

the benchmark to achieve the same level of covered mileage, like a simple home

charging solution for one private household. The second prioritised quality control

variable is the additional expenditure due to the high frequency of unattended plug
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switching when no other participant is around. High amounts indicate additional

high expenditures for the individuals of the collective, as they need to be able to

get to their wallbox and unplug their car. If a charging strategy is not yet clearly

decided on, because of similar values, then the overall occupancy of the wallbox is

inspected. In general, a low occupancy is pursued. This creates, in the first place,

a comfort factor for the wallbox container and shows how much a wallbox is being

used. This way, the curve of the occupancy creates a saturation curve, which is why

it is identified how much room is left for additional participants.

The presented charging strategies are separated into three different priority con-

cepts. These priority concepts influence the series of individuals in one group and

thus prioritise their charging events. For doing so, certain specifications are taken

advantage of. These specifications and series are shown posterior. The body of each

charging strategy, where the actual charging is simulated, remains identical in every

strategy. It consists of the charging process and three charging requirements for each

charging strategy. The charging process works in an ex-post perspective, where it

is tested if the driven mileage of the testing group can be covered by one wallbox.

Therefore deficit mileage is summarized over the length of one home-to-home round

trip and later subtracted over the duration of the charging event. The charging pro-

cess starts when a participant arrives home and fulfills the charging requirements.

Hence, charging is only allowed when every requirement is verified. First of all, the

requirements ensure that only one individual charges at a time. In order to reserve

a time slot, a participant needs to be at home for the proceeding two hours. This

prevents a high frequency of plugging/unplugging of EVs into the wallbox. With the

idea to achieve more comfort alongside a more realistic implementation possibility.

The third requirement comes into place at night-time between midnight and 6 am,

where charging is only allowed for participants who arrive before midnight. These

charge their deficit mileage and need to stay until 6 am. This is implemented to

protect the comfort of the people that live nearby and of the wallbox container. Said

comfort factors are extensively described in section 2.4.1.

2.4.3 Charging Strategies

In literature, some charging models are discussed. The model described in the re-

search from Flath et al. (2012) relies on the ”As-Fast-As-Possible (AFAP)” charging

strategy, which implies that each EV instantly starts the charging process. This is

used to visualize the uninfluenced charging behavior. Therefore this thesis uses the

First-in-first-served (FIFS) in the same way as Flath et al. (2012). Others use smart

charging to optimize their set goals. Found literature mainly minimizes the cost of

charging in complex algorithms (Schuller et al., 2014; Cao et al., 2012). The ap-
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proach of the charging simulation of this work is to enforce as few rules as possible

on the charging collective because too many rules have an unknown impact without

proper research. Hence why, it is focused on having more flexible charging choices

for not flexible drivers (Flath et al., 2012). Thus the smart charging rules of this

study depend on own assessment because the goal of this thesis is to maximize the

covered mileage in the first place. Altogether this thesis formulates in addition to

the straight forwards FIFS-strategy two smart charging strategies. Theses strate-

gies base their scheduled charging times on two variables, which are considered to

mainly influence charging behavior. These are the mileage driven and the time spent

at home. All charging strategies are tested in 300 selected groups per pool, which

are created according to the boundaries of their assigned pool. After testing, the

charging strategies are logically compared based on the quality control variables.

First-In-First-Served (FIFS):

This strategy is based on the idea of first come first served. It means that the driver

who is first to reach the wallbox is allowed to charge his needed mileage. Other

drivers that arrive later have to wait until the wallbox is free again. Thus in some

scenarios, a queue is created. As described, this strategy is applied to provide the

unaltered need of the group (Flath et al., 2012). Hence why, this creates a reference

for the other two chosen strategies.

Highest Mileage (HIMI):

Starting with the first smart charging rule, the testing group is sorted by their

weekly mileage. The household with the highest mileage is the first to be allowed to

schedule their charging events in the week. The same approach is used to schedule

all remaining charging events to ensure that, in the end, the participant with the

lowest mileage can only access the wallbox in the remaining slots. It is logically

derived that mileage has a direct influence on the charging duration. The idea for

this prioritised access is to focus on covering the highest mileage first and thus the

longest charging duration. The leftover charging slots are then assigned to a shorter

charging duration. This is an effort to increase the covered mileage.

Shortest Timehome (SHTH):

The second smart charging strategy prioritises individuals in the group with shorter

spent time at home. Therefore individuals who, on average, spend less time at home

are allowed to schedule their charging periods first. The idea is to cover the mileage

of critical participants, who are seldom at home first. The remaining charging slots

are then filled by participants that spend more time at home, which therefore have

the possibility to postpone charging events. They are more flexible in comparison.

The characteristics of the chosen Timehome variable are thought to take advantage

of individuals that stay longer at home for the benefit of the group.
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3 Results

In this section, the extensively described methodology is applied to the extracted

data set from the MOP. To begin with, the results of the clustering provide valuable

information about the different driving behaviors of the data set. This is followed

by the results of the matching process, which utilizes the identified driving behavior

to create matched groups. The last step investigates the performance of the three

charging strategies in the charging simulations, in which the matched groups are

compared to the randomly selected groups.

3.1 Resulting Clusters

Figure 4: Silhouette Method.

Figure 5: Elbow Method.

At the beginning of the clustering, the Silhouette Method emits similar distinction

values for the fourth and seventh cluster quantities, as shown in Figure 4. This thesis

aims for highly distinct driving behaviors and very similar driving behavior within

the clusters, as stated in the first research question. By additionally inspecting the

further decreasing Elbow Method in Figure 5, a lower distance of driving behaviors
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within the clusters is indicated at higher cluster quantities. Therefore the decision

to choose seven clusters is logical. Additionally, this provides a more balanced

distribution of households.

The normalized euclidean distances between the clusters show promisingly distin-

guishable results and are displayed in Table 6 on page 63. The seven identified

clusters, together with their cluster centers, are shown in Table 3. Clusters with

very low shares are taken into account to represent the overall inspected driving be-

havior. To gain a better understanding, a thorough description and interpretation

of each cluster are made. The source of the description of the driving behavior is

Table 3. In this table, the segmentation variables are written in italic letters. Table

7 on page 63 deals with the different professions that households from the clusters

have. Further on, Table 8 on page 63 contains the specification of households from

the seven clusters. These listed tables are raised by examining the linked socio-

economic details about each household in the MOP. Additionally, the purpose of

each driving event is also attached to the MOP and shown in Table 9 on page 64.

Every cluster’s driving behavior over a week is further visualized in the referenced

mileage per minute diagram.

Table 3: Cluster centers of the seven identified clusters.

Cluster 1 2 3 4 5 6 7

Distribution 28.09% 16.67% 7.30% 36.89% 5.24% 0.75% 5.06%

Workday Variables

Tripduration [h/day] 10.89 3.35 0.16 4.00 5.45 12.48 3.26

Timehome [h/day] 13.66 20.32 21.98 19.34 17.23 15.31 10.37

Timeelsewhere [h/day] 8.16 3.01 1.99 3.86 5.68 6.19 12.97

Roundtripcount 1.47 0.62 0.02 0.91 0.58 0.25 0.29

Tripcount 4.38 1.40 0.09 2.17 1.79 0.70 1.35

Mileagetrip [km/trip] 23.80 16.17 1.72 11.76 34.32 399.71 25.25

Start [h] 10.02 12.31 3.00 12.09 11.03 12.88 10.63

End [h] 16.24 16.51 6.25 15.94 15.17 17.50 15.56

Weekend Variables

Tripduration [h/day] 2.98 0.05 1.42 1.58 7.08 4.03 0.79

Timehome [h/day] 17.05 23.53 17.66 20.10 8.76 17.90 1.09

Timeelsewhere [h/day] 5.47 0.45 5.63 3.10 11.69 4.09 22.52

Roundtripcount 1.29 0.01 0.46 0.90 0.55 0.38 0.07

Tripcount 3.37 0.04 1.08 2.06 1.84 1.00 0.61

Mileagetrip [km/trip] 20.12 1.18 20.76 13.75 192.22 115.24 12.04

Start [h] 12.10 3.00 13.94 14.17 10.46 15.00 8.00

End [h] 15.23 7.00 15.81 15.48 17.94 11.50 16.75
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3.1.1 Cluster1: high frequent commuter (medium)

Cluster1, the second-largest cluster with 28.09% of all assigned households, mainly

consists of employees, visible in Table 7 on page 63. Each household is hereby

classified through the profession and purpose of the trips. Additionally, this cluster

contains the utmost amount of families and flat-sharing communities. Drivers of

this cluster have an astonishingly high amount of trips and frequently drive home

to home round trips. They are further characterised to have the second-longest trip

duration and second shortest spent time at home. To be exact, they have an overall

medium mileage of 23.79km on workdays and 20.21km on weekends. The purposes

of weekly driving events are mainly work-related and errand-related. On weekends

the driving purpose change to free-time activities or errands. A driver from this

cluster is most likely to drive medium-long trips to work and tends to deal with

errands on the way back home from work. On weekends these drivers enjoy their

free-time activities and take care of errands. This cluster has very repetitive driving

behavior, which is visualized in Figure 6. The specific peaks at the start and end of

the day are most likely caused by the high amount of employees that drive during

these rush-hour times to their workplace.

Figure 6: Daily Mileage of Cluster1.

3.1.2 Cluster2: local workday commuter (short)

16.67% of all households are assigned to this cluster, of which the majority are

identified as single. The most noticeable property is the longest overall spent time at

home together with the rather shorter trip duration in comparison to other clusters.

In total, this cluster mainly consists of employees and retired persons who drive an

average medium mileage of 16.17km on workdays coupled with the shortest mileage

of only 1.18km on average during the weekend. Cluster2 contains unusual starting

and ending times in their trips on weekends. Those surprisingly include a trip ending

on the weekend at 3 am and starting a trip at 7 am. Through further examination,
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it is found that these are created by only one participant, who drives a round trip on

weekends. Very few other households drive also on the weekend but do not return

in the examined week. Thus, their starting and ending time is not created by the

algorithm. K-means assigned such participants to the Clusters, because of other

characteristics. Drivers from this cluster have a round trip at nearly every second

trip, on which they go to work or arrange errands. Thus, on weekends this cluster

prefers to stay at home, except for the a few driver that do not perform a round

trip. The driving behavior is visualized in Figure 7.

Figure 7: Daily Mileage of Cluster2.

3.1.3 Cluster3: weekend free-time trips (medium)

This cluster with a share of 7.30% belongs, therefore, to the four smaller clusters.

Mainly composed of single employees and retirees, drivers from this cluster are fea-

tured with the highest spent time at home during the week alongside a relatively

long time at home on the weekend. The overall trip duration is the lowest of all

clusters. Driving events are preferably done on the weekend with a medium mileage

of 20.76km and short trip duration. These are generally related to free-time activi-

ties. Drivers usually stay at home on workdays, which results in the cluster having

the lowest trip frequency of all clusters. The driving behavior of this cluster, illus-

trated in Figure 8, demonstrates the opposing mirror image of Cluster2. Besides

that, Cluster3 also has particular unusual starting and ending times of trips that

are caused by one round trip of one driver. This cluster suffers from very few drivers

that have the same issue as Cluster2.

3.1.4 Cluster4: frequent local errands (medium)

Resembling the highest participant count of 36.89%, this cluster mainly consists of

employed or retired singles and couples. Moreover, the evenly distributed overall
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Figure 8: Daily Mileage of Cluster3.

shorter mileage and the second-highest trip frequency distinguishes this cluster from

the others. Furthermore, these drivers use their cars usually for daily errands and

some work-related trips. In alignment with similar visual properties like Cluster1,

visible in Figure 6 on page 23, Cluster4’s mileage increases on the weekend rather

than decrease as the mileage of Cluster1 does. Additionally, a higher amount of

errand-related trips and fewer work-related trips on workdays are prominent. This

can probably be explained by the higher amount of retirees compared to employees

in this cluster. This driver type has everyday errands and free-time-related trips

and prefers to stay local. Similar visual characteristics like Cluster1 are shown in

Figure 9.

Figure 9: Daily Mileage of Cluster4.

3.1.5 Cluster5: weekend high mileage (long)

Being part of only 5.24% of all participants, these drivers spend their time at home

very differently on workdays and weekends. During workdays, a medium mileage fol-

lowed by a lower trip frequency describes their behavior. On weekends, the mileage

drastically climbs and reaches its peak on Sunday. Intentionally, some drivers choose

their second home as a destination for weekend drives, where they spend one day.
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High mileage is possibly also settled by the free-time-related drives. The significant

spike of mileage on weekends is illustrated in Figure 10. Furthermore, a household

from this cluster uses their car for an overall mixed purpose and does not stay very

local.

Figure 10: Daily Mileage of Cluster5.

3.1.6 Cluster6: high mileage driver (very long)

With 0.75% of all participants and a total of six persons in four households, this

cluster is the smallest. Nevertheless, this cluster is essential to represent the overall

driving behavior, considering their unique properties. Driving by far the highest

mileage, this driver only visits 1.25 times their home during the week. This fits

the most extended workday trip duration of half a day on average for these drivers.

On weekends, this trend continues, hence why these drivers have the highest overall

mileage per trip on workdays with 399.7km. The 0.75 round trips per weekend,

together with the low time spent elsewhere, indicates that these drivers mainly

spend their time in the car. The purpose of their trips is mostly free-time activities

on workdays and a mixture between free-time and errand-related drives, with only

one work-related driving event. The visualized characteristics are shown in Figure

11.

3.1.7 Cluster7: seldom at home (medium)

The cluster contains only 5.06% of all participants and has both individual and

overall lowest time spent at home. This probably results from the three days time

spent elsewhere during the week, which also is the highest of all clusters. These

drivers’ preferred location to stay during the week is reachable within a medium

mileage, causing the drivers to make daily use of their car. The cluster itself consists

of employed or retired singles and couples. Round trips on the weekend are very

uncommon. Therefore, this driver type mostly drives during the week with the
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Figure 11: Daily Mileage of Cluster6.

main purpose of driving work-related trips. On the weekend, the majority of trips

are errand-related, though nearly a quarter of them are used to getting to the driver’s

second homes. The average driving behavior is visible in Figure 12.

Figure 12: Daily Mileage of Cluster7.
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3.1.8 Relationship and Analysis

The relationships and a short summary of unusual findings are listed in this part.

The clustering resulted in interesting different driving behaviors. This leads to

Cluster2 and Cluster3 that have unusual starting and ending times in their trips.

These originate in both clusters from only one household that drives one round trip

on the weekend in the case of Cluster2 and during workdays in the case of Cluster3.

Thus clarifying the unusual starting and ending times on weekends. However, a few

starting and ending times of drivers are not listed because of unfinished round trips,

which the used python algorithm does not consider. By far outstanding is Cluster

6, where just four assigned households drive more than half a day on workdays and

resemble the outlier of the data set.

Figure 13: Dendrogram of the seven cluster centers.

The hierarchical agglomerate approach is applied to gain a better understanding

of the relationship between the clusters and allows a natural interpretation of the

drivers. The resulting dendrogram is shown in Figure 13. A prominent property to

distinguish the cluster is the mileage, which is why the caption in brackets relates

to the driven mileage. Inspecting the dendrogram further, four clusters emit from

a similar group. The first pair is Cluster2 and Cluster4, which aligns with the

second-lowest euclidean distance, visible in 6 on page 63. They mainly vary in the

mileage and trip count on the weekend, on which Cluster2 prefers to stay at home

and has nearly no driving event, while Cluster4 is far more active. The second pair
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consists of Cluster1 and Cluster7. They differ significantly in their trip frequency,

with Cluster1 having the overall highest trip count. Moreover, Cluster7 has the

overall lowest time spent at home. These two characteristics noticeably differentiate

them.

Apart from the examination of the dendrogram, it is noticed that Cluster1 and

Cluster4 have the lowest overall euclidean distance of their cluster centers. Both

have most of their drivers allocated to them. Thus, it is expected that the majority

of households have similar driving patterns in urban areas from Baden-Württem-

berg. This is further underlined by the second-lowest cluster distance of Cluster2

and Cluster4. However, Cluster1 and Cluster2 do not share similar driving behav-

iors. Examining their characteristics in detail is crucial. Visually they differ slightly

through their weekend driving behavior. Cluster1’s mileage decreases, while Clus-

ter4’s mileage increases over the weekend. In terms of segmentation variables, their

main differences are the Tripcount and Tripduration on workdays. On workdays,

Cluster1 completes twice as many trips as Cluster4 and drives more than double

of Cluster4’s time. In addition, Cluster1 has a much higher mileage on workdays

and weekends compared to Cluster4. Other more minor differences lie in the com-

bination of the Timehome as well as the starting and ending times. Altogether, the

drivers of Cluster1 are, in average, more active than those of Cluster4.



3 RESULTS 30

3.2 Resulting Matched Groups

The resulting matched groups utilize beneficial relationships between cluster cen-

ters in the scope of the matching procedure’s limits. The output consists of seven

matched groups as a result of forcing every cluster into the matching process. The

matching towards the set boundaries gives additional input on the standard devi-

ation per matched group and is visible in Figure 14. In addition, the limit of the

Timehome/Km-Ratio is assessed to obtain knowledge about their available charging

time, as shown in Table 10 on page 64. The amount of each added cluster center to

the matched group is translated into a percentage share and is found in Figure 20

on page 35. Each stated shares of the matched groups refer to this figure.

Figure 14: Standard deviation of mileage from all matched groups.

3.2.1 Matched Group A

Cluster1, with a very similar distributed daily mileage, inherits 33.3% of the shares

from Matched Group A. The examined driving behavior of their cluster center is

found in Figure 15 on page 31. In view of Cluster1, Cluster2 adds to the falling

mileage on the weekend with a share of 13.3%. The decreasing mileage on the week-

end is filled through the complementary Cluster3 and Cluster4. Both have identical

proportions of 26.7% in Matched Group A. With the overall standard deviation of

34.77km/day, this matched group has a rather smooth mileage distribution. The

standard deviation is created by matching this group to the possible technical lim-

its, as mentioned in section 2.3.3. The cause for this is the interaction between all

assigned clusters. In detail, the complementary properties from Cluster3 towards

Cluster1 and Cluster2 are smoothing mileage on the weekend. The share of Cluster4

possibly serves to increase the overall mileage. However, the mileage from Cluster1,

2 and 4 are piling on Friday. This is why the upper limit of the matching is probably

reached on Friday.
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Figure 15: Daily mileage of cluster centers 1, 2, 3, 4.

3.2.2 Matched Group B

Cluster3 has the highest share of 33, 3% in the Matched Group B. Cluster1, and

Cluster4 share the same proportion. The smallest share has Cluster2 with only

6.7%, although the matching for this group started with Cluster2. In comparison

to Matched Group A, Cluster3 and Cluster2 have a higher share. From an analysis

point of view, this matched group contains the identical Clusters of the Matched

Group A, but the shares of the two clusters differ. These clusters are Cluster3 and

Cluster2. Cluster3 has a higher share and Cluster2 a lower share in comparison

with Matched Group A. The difference in these two shares probably results in the

slightly higher standard deviation, visible in Table 10 on page 64, compared to

Matched Group A. Nonetheless, their mean driving behavior is shown in Figure

15 and takes advantage of the known complementary properties of the allocated

clusters.

3.2.3 Matched Group C

Matched Group C is equally divided between Cluster1, Cluster3, and Cluster4.

This matched group uses the complementary properties of Cluster1, Cluster3, and

Cluster4 that are also presented in Matched Group A and B. Figure 16 visualizes the

behavior on weekends, in which the decreasing mileage from Cluster1 substitutes the

increasing mileage of Cluster3. Cluster4 adds smooth mileage on top of that. These

complimentary properties show their advantages on daily mileage smoothing, which

is why this matched group shares the lowest standard deviation compared with other

matched groups in Figure 14 on page 30. This matched group is classified to be a

good match because of their overall lowest standard deviation.
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Figure 16: Daily mileage of cluster centers 1, 3, 4.

3.2.4 Matched Group D

This matched group has the identical low standard deviation of mileage like Matched

Group C. In the further inspection of the Pie-Chart, Matched Group D is indistin-

guishable from Matched Group C. Apart from knowing that this Matched Group D

started with adding Cluster4, compared to Matched Group C, no difference in their

properties exist. The identical properties are visualized in Figure 16 and show that

certain properties are selected more frequently by the matching process.

3.2.5 Matched Group E

Being highly distinct from other matched groups, Matched Group E has two assigned

clusters. These clusters are Cluster5 and Cluster1. 85.7% of all shares are allocated

to Cluster1. Cluster5 has a far-lower mileage on workdays, which start climbing

on Friday. Cluster1’s high mileage on workdays and the decreasing mileage after

Fridays is possibly minimally contrary to the driving behavior of Cluster5. However,

the high mileage of Cluster5 on the weekend is substituted by the high share of

Cluster1, as illustrated in Figure 17. The adding of mileage to Friday is most likely

the limiting factor. Nevertheless, the standard deviation is higher than the standard

deviation of other matched groups that inherit Cluster1, 3 and 4.

Figure 17: Daily mileage of cluster centers 1, 5.
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3.2.6 Matched Group F

Most striking is the outstanding high standard deviation of 163.22km/day. This

is created by including Cluster6 with a critically high standard deviation along its

particular unrivaled peaks on Tuesday and Friday. No other Cluster has the specifi-

cation to work complementary against these peaks. Only Cluster1 and Cluster3 are

matched into this group, most likely because of their mutual complementary char-

acteristics, which only increase the mileage until the limit on Friday are reached, as

shown in Figure 18. Cluster1 has a share of 27.3% and Cluster 3 of 63.6%. Matched

Group F, because of its unmatched high standard deviation, is considered the worst

matched group.

Figure 18: Daily mileage of cluster centers 1, 3, 6.

3.2.7 Matched Group G

Characterised by the second lowest standard deviation with 18.76km/day, Matched

Group G makes use of the known properties from the cluster combination of Clus-

ter1, Cluster3 and Cluster4. Except Cluster7 is added to this matched group first.

Cluster7 varies more in mileage and has two smaller peaks on Tuesday and Friday.

This is visible in Figure 19, compared to the other assigned clusters. This leads to

the slightly higher standard deviation than Matched Group C and D. Each cluster

has a share of 30.8% apart from Cluster7, which owns 7.7%. This matched group

has a low standard deviation and is considered a perfect match.
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Figure 19: Daily mileage of cluster centers 1, 3, 4, 7.

3.2.8 Similarities and Analysis

Noticeably it is interesting that certain driving behaviors are far more likely to

be merged together, although each cluster class was forced at least one time into

the matching process. These certain driving behaviors are from Cluster1, Cluster3

and Cluster4. Their daily interaction is illustrated in Figure 16. This combina-

tion has high shares in Matched Group A, B, C, D and G, as presented in Figure

20. Nonetheless, this combination is not found in Matched Group E and Matched

Group F, which have oddly shaped average daily driving patterns and inherit clus-

ters with unrivaled high mileage. Nonetheless, the clusters that contain the majority

of households, which are Cluster1 and Cluster4, are commonly matched together.



3 RESULTS 35
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[G]

Figure 20: Pie-Charts of Matched Groups A-G.
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3.3 Results of Charging Simulation

This section examines the results of the charging strategies for the two testing pools.

The pool with the matched groups contains Matched Group A, Matched Group B,

Matched Group C/D, Matched Group E, Matched Group F and Matched Group

G. The Matched Group C and D are assessed together because of their identical

characteristics. In detail, their composition is simply identical and therefore, their

same shares together with their indistinguishable standard deviation have no influ-

ence on the charging strategies. The second pool contains the randomly selected

participants, which were not checked for their compatibility. All created random

groups are summarized by the Random Group. Hence, they represent the uninflu-

enced testing group.

To answer the last two research questions, the examination starts by inspecting

the charging strategies of each matched group upon the different group sizes. Each

group is reviewed in their covered mileage, occupancy of the wallbox and unattended

switching of charging plugs for every charging strategy. The inspected charging col-

lectives range from a minimum group size of three households to a maximum group

size of fifteen households in steps of three. In the aspect of covered mileage, this

thesis considers a charging strategy suitable if 90% of the driven mileage is charged

at the shared wallbox, as mentioned in section 2.4.2. Hence why, charging strategies

are only considered suitable above the 90%-benchmark.

The results are presented by comparing the performance of each Matched Group,

illustrated in blue, against the performance of the Random Group, shown in red, in

the scope of the three charging strategies.
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3.3.1 Comparison of Matched Group A

[a] [b] [c]

[d] [e] [f]

[g] [h] [i]

Figure 21: Matched Group A:

Coverage of Mileage: (a) FIFS (d) HIMI (g) SHTH;

Occupancy of the wallbox: (b) FIFS (e) HIMI (h) SHTH;

Quantity of switching plugs unattended: (c) FIFS (f) HIMI (i) SHTH.

The results of the charging strategies start with comparing the FIFS-strategy of

the Matched Group A and the Random Group. All mentioned graphs are found in

Figure 21. The two groups have similar starting points. At the group size of 6, they

part ways, in which the Matched Group A performs better so that the 90%-mark

is hit above a group size of 9 households, while the random groups fall underneath

the benchmark before that at a group size between 6 and 9 households.

The HIMI-strategy results in a similar behavior until the size of 9 households at

which the Matched Group A covers mileage slightly better than the Random Group.

Remarkable is the identical coverage of mileage at a group size of 9. Hence why, this

matched group covers mileage close to identical with 12 households assigned to one

wallbox, than just 9 households. Additionally, the chosen strategy is unexpectedly

able to nearly cover 90% of the car mobility needs until the group size of 15 house-

holds.

Continuing to the SHTH-strategy, a highly distinguishable progression is identi-

fied. First of all, the matched group starts clearly with higher coverage of mileage.

Besides this, the Random Group falls nearly linear, while the slope of the matched
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group decreases more with a climbing group size. However, the benchmark is crossed

slightly later than the FIFS-strategy but far before the HIMI-strategy. Nevertheless,

the Random Group performs the worst in this strategy, which is illustrated by only

sufficiently covering mileage for slightly more than 3 households.

In terms of occupancy of the wallbox, each inspected strategy has nearly the same

progression of their curve, in which the Random Group always has a higher occu-

pancy than the Matched Group A. They differ only in the distance between the two

curves. The smallest distance is discovered in the HIMI-strategy and is followed by

the FIFS and SHTH-strategy. Occupancy means that an EV is currently plugged

into the wallbox. This does not mean that the EV charges over the full minimal

time slot of two hours. Thus the progression of the occupancy together with the

good coverage implies that the Matched Group A uses the wallbox more efficiently

than the Random Group.

The number of events for switching the plug unattended is practically identical. Only

the matched group under the FIFS-strategy results starts with fewer events. Since

they are very similar in the interval of 6 up to 15 households, no other distinguishable

behavior is found. Both groups begin with high numbers of switching charging cables

unattended, which diminishes in increasing group sizes because the charging slots

exploit every free space to charge the demanded mileage, which ultimately causes

seamlessly scheduled charging events. Thus an individual from this collective has to

switch the charging cable to their EV up to 9 times per participant in one week at

the smallest group size. Under the best performing HIMI-strategy, approximately a

quantity of 4.5 switching events are discovered at the highest achievable group size

above the 90%-mark.

3.3.2 Comparison of Matched Group B

Likewise, all examined results from the charging simulations are found in Figure 22

on page 39. The examination of the Matched Group B starts with comparing the

FIFS-strategy. Altogether, the Matched Group B has a very similar progression like

the Matched Group A, which is derived from the similar cluster center combination.

In comparison to Matched Group A, the Matched Group B starts slightly better in

covering mileage. At a group size of 6 households, they outperform the Random

Group nearly identical.

Under the HIMI-strategy, the behavior differs towards Matched Group A. The

Matched Group B does not possess a sudden fall at a group size of 9, thus it con-

tinues its trend to cover mileage better than the Random Group. However, the

HIMI-strategy astonishingly manages to stay above the 90% benchmark over the

whole examined interval and is the only matched group that memorably achieves to
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[a] [b] [c]

[d] [e] [f]

[g] [h] [i]

Figure 22: Matched Group B:

Coverage of Mileage: (a) FIFS (d) HIMI (g) SHTH;

Occupancy of the wallbox: (b) FIFS (e) HIMI (h) SHTH;

Quantity of switching plugs unattended: (c) FIFS (f) HIMI (i) SHTH.

satisfy 90% of the charging demands up to the size of the charging collective of 15

households.

Next, the same progression under the SHTH-strategy as the Matched Group A is

illustrated. Hence why, also the curve of the matched group falls stronger with

increasing group size. In this figure, the Matched Group B is far better than the

Random Group. The Matched Group B performs under the SHTH-strategy greater,

compared to the FIFS-strategy and crosses the benchmark between a group size of

9 and 12 households.

To obtain information about the charging behavior, the occupancy of the wallbox

is assessed. In each strategy, the Random Group has the higher occupancy, but

both have similar properties in their progressions. The occupancy differs the most

in the SHTH-strategy, in which the Matched Group B has a lower occupancy. The

Matched Group B utilizes the charging slots once again more efficiently than the

random groups while covering mileage greater. Subsequently, the better coverage of

the Matched Group B under the SHTH-strategy, together with the lower occupancy,

compared to the Matched Group A, confirms that Matched Group B achieves possi-

bly a higher efficiency. Therefore, the usage of the wallbox most likely contains the
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overall least idling times during the assigned charging slots.

For all events of switching plugs unattended, the Matched Group B starts lower and

continues to approach the progression of the random groups. However, the Matched

Group B has again nearly identical progression and only differs slightly under the

SHTH-strategy. Coupling this with the covered mileage by the Matched Group

B and the Rndom Group suggest a less fragmented charging scheduling alongside

a more efficient usage of the wallbox. The lesser fragmented charging scheduling

is derived from the unattended switching plugs. The background behind this is

that seamlessly scheduled charging events always have a person that arrives at the

charging stations to switch the charging cables between the car and thus, someone

is present to do so. In a fragmented charging scheduling, this does not occur.

In conclusion, the Matched Group B surpasses the random groups in every aspect

and achieves more efficient usage of the wallbox than the very similar structured

Matched Group A.

3.3.3 Comparison of Matched Group C, D

[a] [b] [c]

[d] [e] [f]

[g] [h] [i]

Figure 23: Matched Group C/D:

Coverage of Mileage: (a) FIFS (d) HIMI (g) SHTH;

Occupancy of the wallbox: (b) FIFS (e) HIMI (h) SHTH;

Quantity of switching plugs unattended: (c) FIFS (f) HIMI (i) SHTH.
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The next assessed matched group is Matched Group C, which also represents the

characteristics of Matched Group D, because of their identical features. Their results

of the charging simulation is visible in Figure 23 on page 40. Starting with the FIFS-

strategy, it is shown that the starting point of the matched group is the same as the

one of the random groups. From there on, the Matched Group C and D exceeds the

Random Group with very good coverage of mileage at a group size of 9. Nevertheless,

the FIFS-strategy hits the benchmark after 9 assigned households. This behavior

corresponds to the behavior of Matched Group A and Matched Group B.

The HIMI-strategy suits this matched group excellent in smaller group sizes. It

achieves to lose no additional mileage up to a group size of 9 households and overall

surpasses the Random Group. The benchmark of 90% covered mileage is hit past

a group size of 12 households. In contrast to the Matched Group B, the Matched

Group C does not achieve to stay above the benchmark in the inspected interval.

Further on, the trend of surpassing the random groups is also shown in the weaker

SHTH-strategy, in which both groups have almost parallel degradation. Compared

to the other top performing groups, Matched Group C and D are weaker in covering

mileage than the superior Matched Group B and Matched Group A, but slightly

better in covering mileage than the later examined Matched Group G. Apart from

this, the Matched Group C and D outperform the Random Group in covering mileage

significantly.

In view of the occupancy, which is shown in Figure 23 on page 40, the Matched

Group C, D and the Random Group have nearly identical curve progressions. Thus

it seems that all applied strategies do not work as efficiently on the Matched Groups

C and D as Matched Groups A and B.

The comfort factor of switching plugs unattended is practically the same. Hence

why, the Matched Group C and D have higher events than the Matched Group A

and B. Only under the SHTH-strategy the Matched Group C and D result in higher

events than the Random Group.
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3.3.4 Comparison of Matched Group E

[a] [b] [c]

[d] [e] [f]

[g] [h] [i]

Figure 24: Matched Group E:

Coverage of Mileage: (a) FIFS (d) HIMI (g) SHTH;

Occupancy of the wallbox: (b) FIFS (e) HIMI (h) SHTH;

Quantity of switching plugs unattended: (c) FIFS (f) HIMI (i) SHTH.

This part starts with the assessment of the Matched Group E under the FIFS-

strategy. All curve progressions of the performance indicators are found in Figure

24. The Matched Group E results by far in the worst performance and crosses

the benchmark shortly after a group size of 3, then continues to fall almost linear.

Therefore, the matched group stays for the whole interval underneath the better

performing Random Group.

Likewise, the HIMI-strategy also shows the worst assessed performance. The Matched

Group E crosses the 90%-mark at a group size of 6 households and further decreases.

The next inspected SHTH-strategy is even weaker in covering mileage. The Matched

Group E struggles to achieve the set benchmark at the beginning group size of 3

and suddenly decreases toward the worst documented coverage of mileage in the

inspected pool. This is highly unexpected because of the similarly low standard

deviation that good-performing matched groups contain.

In terms of occupancy, the Matched Group E clearly surpasses the Random Group

and thus has a significantly higher occupancy of the wallbox. This is recognisable in

smaller group sizes under the FIFS and HIMI-strategy and aligns with the Random
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Group in larger group sizes. With keeping in mind that the Matched Group E has

the overall worst coverage of mileage, the unusual high occupancy clearly indicates

an inefficient usage of the wallbox. At least the SHTH-strategy shows a more alike

progression of the occupancy to the random groups, which is slightly higher and

proceeds side by side. Nevertheless, the wallbox is most of the time blocked and the

charging collective surely is not able to cover their mileage.

Assessing the amounts of switching plugs unattended shows the highest recorded

events of 12 events in smaller group sizes under the FIFS and HIMI-strategy. Only

the SHTH-strategy has very few events and is settled underneath the Random Group

after a group size of 3 households. Above all, the Matched Group E has a trouble-

some quantity for unattended switching of plugs.

3.3.5 Comparison of Matched Group F

[a] [b] [c]

[d] [e] [f]

[g] [h] [i]

Figure 25: Matched Group F:

Coverage of Mileage: (a) FIFS (d) HIMI (g) SHTH;

Occupancy of the wallbox: (b) FIFS (e) HIMI (h) SHTH;

Quantity of switching plugs unattended: (c) FIFS (f) HIMI (i) SHTH.

Next is the Matched Group F. The performances of this group are presented in

Figure 25 on page 43. The Matched Group F is beforehand characterised to have

the by far highest standard deviation upon the matched groups. However, the curve
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of the FIFS-strategy is nearly identical to the progression of the Random Group.

This similar performance is further continued into the small group sizes in the HIMI-

strategy. After the group size of 6, the Matched Group F slightly falls beneath the

better coverage of the Random Group and they end on nearly the same coverage at

a group size of 15 households.

The SHTH-strategy provides a different picture. Under this strategy the Matched

Group F decreases significantly stronger than the Random Group. Above that,

the Matched Group F performs slightly worse than the already under-performing

Matched Group E after not even reaching the benchmark at the beginning.

The bad overall performance in charging the needed mileage is followed by an unusu-

ally low occupancy in the FIFS and HIMI-strategy, visible in Figure 25 on page 43.

Nonetheless, the Matched Group is the first that achieves to exceeds the occupancy

of the wallbox to this level when applying the SHTH-strategy. Besides that, it is

an unexpected finding to have a low occupancy for the better performing charging

strategies, while having a high occupancy of the wallbox for the worse performing

charging strategy. Combining this with the knowledge about SHTH-prioritisation

means that the assigned households, which have a short Timehome, block the two-

hour charging slots without charging the majority of the time. On the other side,

the prioritisation of the HIMI-strategy is far more efficient because Cluster6, with

its high mileage, schedules charging events first.

The Matched Group F has the lowest amount of switching plugs when no one is

around in all charging strategies. This effect is with lower mileage and more partic-

ipants directly linked to nearly seamlessly scheduled charging slots. However, in the

case of Matched Group F this probably shows the long charging events of Cluster6.

Apart from this, applying the SHTH-strategy results in a slightly higher amount of

events from switching plugs. The findings show that the Matched Group F is not

suitable to perform better than the Random Group in covering mileage. However,

the unusual low occupancy and the rather low quantity of switching the plugs unat-

tended leaves Matched Group F to charge more efficiently than the Random Group

under the FIFS-strategy and HIMI-strategy.
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3.3.6 Comparison of Matched Group G

[a] [b] [c]

[d] [e] [f]

[g] [h] [i]

Figure 26: Matched Group G.:

Coverage of Mileage: (a) FIFS (d) HIMI (g) SHTH;

Occupancy of the wallbox: (b) FIFS (e) HIMI (h) SHTH;

Quantity of switching plugs unattended: (c) FIFS (f) HIMI (i) SHTH

The last examined group is Matched Group G and its progressions of the perfor-

mance indicators are shown in Figure 26. The Matched Group G provides similar

coverage under the FIFS-strategy as the Matched Group A and B. It also hits the

benchmark shortly after a group size of 9 households. Additionally, the HIMI-

strategy continues to have similar progressions to Matched Group B, but does not

cover the same mileage. The Matched Group G remarkably achieves to stay above

covering 90% up to a group size of 12 and crosses the benchmark between a group

size of 12 and 15 households. In the scope of the SHTH-strategy, the Matched

Group G stays ahead of the Random Group, but crosses the 90% benchmark at the

group size of 6 households in a nearly parallel fall to the Random Group. There-

fore, the Matched Group G is only better than Matched Group E and F in the

SHTH-strategy.

In terms of the wallbox’s occupancy, the Matched Group G stays slightly beneath

the occupancy of the Random Group in every strategy. Only the FIFS and HIMI-

strategy achieve to have a lower occupancy at larger group sizes. Combining this
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examined behavior with the generally good coverage of mileage shows a relatively

efficient usage of the wallbox. Each charging slot is probably only used for charging.

The quantity for switching plugs unattended yields very similar characteristics to the

curve progression of the Random Group. Besides this, the SHTH-strategy results in

higher events at smaller group sizes. This indicates more fragmented charging slots.

3.3.7 Similarities and Summary

Table 4: Interval above 90%-benchmark of covering

Charging Strategies FIFS HIMI SHTH

Random Group 3-6 3-12 3

Matched Group A 3-9 3-12 3-9

Matched Group B 3-9 3-15 3-9

Matched Group C, D 3-9 3-12 3-9

Matched Group E 3 3-6 0

Matched Group F 3-6 3-9 0

Matched Group G 3-9 3-12 3

In this part, the performances of the charging strategies are first summarized and

then similarities in the identical intervals above the 90%-benchmark are assessed.

According to methodology in section 2.4.2, the decision variables for assessing the

best strategy and group are prioritised in the following order. First, the overall

covered mileage is evaluated, which has the highest priority. If the values of multiple

groups are quite similar, then the occupancy together with the amount of switching

plugs unattended is examined. For doing so, the average values from Table 5 on

page 49 are used. With that knowledge, a charging collective with a size of 3

households benefits from both the FIFS-strategy and HIMI-strategy across all groups

on averages. They are very similar in their occupancy and amount of switching

charging cables unattended. From this point on the HIMI-strategy dominates the

remaining interval up to a size of the collective from 15 households. Altogether, the

optimal strategy for large sizes of the charging collective is by far the HIMI strategy.

In particular, the properties of the Matched Group B and nearly Matched Group

A reach the full potential of the HIMI-strategy. The SHTH-strategy does not suit

the groups that well and is by far the worst strategy. In general, high sensitivity

of the matched and random groups upon the three selected charging strategies are

discovered. In addition, the majority of the matched groups behave differently

towards the random groups.

In the next part, the similarities are examined in the identical operating intervals

above the 90%-benchmark. To provide a better comparison across the groups, this
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part selects identical intervals in which the groups operate above the 90% bench-

mark and compares the performances. The FIFS-strategy is the first strategy. The

idea behind the FIFS-strategy is that uninfluenced charging behavior is monitored.

Knowing this, the assessment starts. First, the superficial assessment above the

90% benchmark is taken into account in Table 4. From this, three similar groups

are identified. The first is Matched Group A, B, C (respectively D) and G operate

in the largest interval compared to the other groups. Examining the curve progres-

sions leaves nearly identical progressions. They tend to have better coverage and

lower amounts of switching plugs when no one is around than the Random Group.

Individuals from these groups most likely have additional expenditures of up to nine

unattended switching events at the smallest group size and have to switch the plug

less than six times in the largest feasible group size. The second smallest interval

inherits both the Matched Group F and the Random Group. Both have identical

coverage of mileage in the examined interval under the FIFS-strategy. However,

they differ significantly in the usage of the wallbox. In particular, the Matched

Group F has a far lower occupancy besides nearly the same coverage of mileage

thus charging events are more efficiently used with less idling time. In addition, the

curve of switching charging cables shows way fewer events and, therefore, a higher

comfort for the charging collective, in which the Matched Group F always has ap-

proximately 1-2 events less. The Matched Group F is considered to be the better

group, in comparison with the Random Group, according to the methodology in

section 2.4.2. The last interval above the benchmark contains Matched Group E at

a group size of 3 households. Hence why, Matched Group E is very distinguishable

in its curve progression from the others in the inspected FIFS-strategy and holds’

the worst performance.

Next is the HIMI strategy that has a much larger operating interval above the

benchmark compared to the other strategies and is displayed in Table 5 on page 49.

Under this strategy the groups cover mileage the best, which is further clarified in

the smallest examined distance between the curve of the Random Group and the

matched groups.

From Table 4 on page46 the first assessed similar groups are constructed. In the

largest interval operates Matched Group B. It is the only matched group that

achieves to stay above the benchmark for the whole interval. This is why the charg-

ing collectives from Matched Group B have the remarkable ability to cover 90% of

the mobility needs from 15 households that are assigned to only one wallbox. The

Matched Group A is slightly behind this and falls beneath the benchmark minimally

before a group size of 15 households. The second-largest interval of covering 90% of

mileage belongs to the Random Group together with Matched Group A, C, D and

G. In this interval performs the Matched Group A the best and its sudden fall in
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coverage at a group size of 9 households is not found in other matched groups. In

further inspection of the curve progressions, the Matched Group C, D is very similar

to Matched Group G in every aspect. Furthermore, the occupancy of the wallbox

along with the amount of switching plugs is very similar in Matched Group A, C, D

and G. Matched Group F is once again most closely related to the Random Group.

Except for the progression of the occupancy and the amount of switching charging

cables, which are very distinguishable. In both performs the Matched Group F far

better than the Random Group. The smallest interval contains one more time the

Matched Group E, which has no similarities in its progression to the other groups.

Furthermore, the last charging strategy is examined. Altogether, this strategy af-

fected the characteristics of the groups the most. The SHTH-strategy achieves by

dividing the groups into three groups that have different intervals, in which they

cover 90% of their mileage. The most significant interval reached from a group size

of 3 to a group size of 9. Nonetheless, Matched Group A, B, C, D operate in this

interval without Matched Group G. The curve progressions of covering mileage are

nearly identical. Only in the occupancy of the wallbox have Matched Group A and

B lower values. In addition, Matched Group B has slightly lower switching events

of the charging cable in smaller group sizes, which possibly roots from the higher

share of Cluster3 coupled with a lower share of Cluster2. Hence why, no significant

similarities apart from the covered mileage are found. This leads directly to the next

interval, which the Matched Group G and the Random Group inherit at a group size

of 3. Because of the better ability to charge the needed mileage from the Matched

Group G, the benchmark is hit slightly before a group size of 6. Thus, the Matched

Group G has similar linear curve progressions that are above the weaker Random

Group. However, both groups have similar patterns in the occupancy of the wall-

box and quantities of switching plugs unattended. The missing groups are Matched

Group E and F, which do not achieve to cover mileage above the 90% under the

examined charging strategies and are therefore not relevant for the collective.
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Table 5: Averages of each charging strategy

Group Size 3 6 9 12 15

Coverage of Mileage

FIFS 95.75% 92.75% 87.68% 80.47% 69.85%

HIMI 95.95% 94.76% 92.47% 89.99% 85.50%

SHTH 92.25% 85.84% 79.61% 72.11% 64.06%

Occupancy of Wallbox

FIFS 22.08% 42.72% 58.99% 69.49% 75.65%

HIMI 22.09% 43.29% 60.32% 72.01% 78.06%

SHTH 23.61% 43.82% 58.56% 69.48% 76.32%

Switching Plugs Unattended

FIFS 9.19 7.05 5.65 4.70 3.96

HIMI 9.17 6.95 5.54 4.57 3.79

SHTH 8.64 6.59 5.26 4.39 3.70
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4 Discussion of Results

Before the interpretation of the findings starts, the main aim of this thesis is restated.

This thesis assesses the feasibility of sharing a wallbox within a collective in the

scope of the examined charging strategies. Understanding driving behavior through

clustering was the first step. Followed by the creation of matched groups to obtain

more benefits in covering mileage and efficiency for the collective. Then, charging

events were simulated over a week for the randomly selected group and the matched

groups in order to compare their characteristics.

4.1 Principal Findings

The interpretation begins with the principal findings of the clustering. As antici-

pated, the clustering methodology aligns with the results of the related literature

(Sodenkamp et al., 2019). Driving behaviors are indeed strongly distinguishable,

which sufficiently answers the first research question and reinforces the suitability of

the unbiased Kmeans-algorithm. The strongest influence on the used methodology

have the chosen segmentation variables, which need to present the most important

aspect of the driving behavior. In this scope, the selected segmentation variables

fulfilled the demands, although the clustering of this work used timestamps, which

Sodenkamp et al. (2019) did not include in their presented methodology of cluster-

ing.

Nonetheless, the clustering resulted in seven identified clusters and classified the

urban areas across Baden-Württemberg in the scope of the MOP. However, the

used data set was not filtered and the unusual driving behavior of Cluster6 sur-

faced. In detail, Cluster6 has four assigned households, which drive more than half

a day on workdays. This outlier can have the tendency to influence further results.

Furthermore, these high mileages are impossible to cover by using an EV under

the assumption that participants only charge at home. Hence why, these challeng-

ing drivers need to charge at public charging stations due to their long trips. The

suggestion to keep these four households, which contain six drivers, could be seen

as unnecessary but provides this thesis with additional knowledge of less common

driving behaviors.

Another unusual finding emerges through the clustering. It is Cluster2 and Cluster3

that have extraordinary starting and ending times in their trips on weekends and

workdays, caused by round trips of one household. These clusters inherit some other

drivers, which drive on weekends and do not return before the end of Sunday. Hence

why, no starting and ending times were assigned to these drivers by the used algo-

rithm because they do not fulfill one round trip. Fixing this issue in the algorithm
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or filtering these participants by the guess of the viewer could reduce the intraclus-

ter distances and could even generate a cluster that only drives on workdays or

weekends. Moreover, Cluster1 and Cluster4 have the lowest distance between their

cluster centers. In addition, the cluster centers of Cluster4 and Cluster2 have the

second shortest distance. Considering that these three resemble the largest clusters,

it can be expected that the majority of households have somewhat similar driving

patterns across urban areas in Baden-Württemberg. With all these findings, the

clustering is plausible and created a sufficient basis for this work.

To answer the last two research questions extensively, this study created a matching

process on its own assessment. Smoothing mileage seems plausible to reduce peaks

on a daily basis in charging demands. For doing so, the candidate is chosen, which

generated the lowest joint standard deviation along with the already existing collec-

tive. A matched group is finally formed when the set technical limits are reached.

In particular, it is important to understand that the ability to cover mileage of

the established matched group depends strongly upon the quantity and quality of

complementary driving behaviors of the data set.

The choice to only focus on the Mileage/Trip to match driving behaviors left the

opportunity open to match people according to their actual arrival and departure

times. However, this thesis chose the approach to step further back from such

detailed matching in order to first assess whether matching is, in the first place,

possible and beneficial. This approach left enough room to create very beneficial

matched groups, especially for larger group sizes. Although, the cluster centers were

only used. Nevertheless, in its specifications, the matching process is also applicable

to individuals, which would allow matching the actual driving behavior and not

only the estimated driving behavior. This is why the matching of individuals would

probably result in better-performing matched groups with the same methodology.

Noticeably, it is interesting that certain driving behaviors are far more likely to be

merged, although each cluster class is forced into the matching process at least once.

The frequently appeared combination consists of driving behavior from Cluster1,

Cluster3 and Cluster4, which is called the 134-combination for now. Upon further

inspection, the most compelling interpretation is that Cluster1 and Cluster3 work

nearly perfectly complementary to each other. Cluster4 is added because of its

seemingly low standard deviation and therefore helps to increase the overall driven

mileage when Cluster1 or Cluster3 are not chosen because of a higher standard

deviation. In the aspect of the visual assessment of the daily mileage, an often

low standard deviation of the matched groups is present, which have high shares

of the mentioned combination. One can interpret that a low standard deviation

is a signal for complimentary working cluster combinations. This interpretation

is further underlined by the difficult-to-match Matched Group F, whose dominant
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peaks, together with its unrivaled high mileage of Cluster6 cannot be compensated

for in the set boundaries to reduce the standard deviation. Nonetheless, only the

performance of the groups under the charging strategies can clear that interpretation

up.

Although matching complementary drivers by their standard deviation works well in

terms of lower standard deviation, some findings are hard to make sense of. In detail,

Matched Group A started with the assignment of Cluster1 in the first selection to

force every Cluster at least one time into a matched group. However, Matched

Group A carries a small share of Cluster2 that was not forced into this group. This

would mean that in one particular cluster combination, the addition of cluster2

provides the smallest joint standard deviation and thus smooths the overall mileage.

The seemingly visual complementary characteristics of Cluster2 and Cluster3 could

have been the key for that, which could root in the similarities to Cluster4 that

were recorded in the assessment of the distance between the cluster centers. From

looking into the other matched groups, only shares from Cluster2 are prominent in

Matched Group A and Matched Group B. However, Cluster2 was only forced into

Matched Group B and not into Matched Group A. Knowing these two things when

interpreting this strange occurrence could only mean that the sequence in which the

clusters are added to the potential collective is the cause. This interpretation could

be further supported by the different shares of Cluster2 in the two matched groups

(Matched Group A and Matched Group B). Cluster2 has a much smaller share in

Matched Group B, although Cluster2 is assigned first to this group. This would mean

that Cluster2 is potentially added in the later progression of constructing Matched

Group A. Hence why, this leads to the interpretation that adding Cluster2 into the

134-combination in the later stage results in the slightly lower standard deviation of

Matched Group A. In view of Matched Group C and D, which started with Cluster3

and Cluster4, no share of Cluster2 is found, probably because the dominant 134-

combination starts with different clusters other than Cluster1 or Cluster2. This

concludes the interpretation that the actual sequence on how a matched group is

constructed influences their properties to some extent.

In addition, the other unusual finding of Matched Group G is that it has the lowest

standard deviation of the matched groups. Likewise to Matched Group A and B,

Cluster7 also has a minimal share next to the 134-combination within the Matched

Group G, which started by assigning Cluster7 first. Consequently, this means that

starting with a differently shaped driving behavior of Cluster7 and later adding the

known 134-combination creates a smoother overall mileage. Thus this finding could

also connect to the interpretation that the sequence in which clusters are added is

of high importance.

In terms of the charging simulation, very different performances were examined.
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The methodology directly influences these results. The set assumptions and bound-

aries heavily influence all results from the charging simulation. First of all, the set

minimal charging time of two hours creates in some groups idling times, in which

an EV is already recharged but remains plugged into the wallbox. This is proba-

bly more common in urban areas because of the rather short trips. Reducing this

minimal charging time would create a better coverage of the wallbox, while also in-

creasing the amount of switching charging plugs drastically and creating high traffic

at the wallbox. Likewise, the switching of plugs would increase with more EVs that

households possess. Thus, the assessment of the minimal charging time presents

a trade-off between comfort and the availability of charging. The same trade-off

is also created by the set resting time. Other factors that influence the charging

are the assumed wallbox specification and the assumed EV consumption. Having a

wallbox with a higher output would reduce charging times and provide the oppor-

tunity to share one wallbox within a larger charging collective. However, increasing

EV consumption creates the opposite. The last influence on the performance has

the smart charging strategies. Their alteration can have a big impact, which was

demonstrated by the very well-performing HIMI-strategy and the bad performing

SHTH-strategy. To measure these performances, the uninfluenced FIFS-strategy

was used. In this regard, the prioritisation was only enforced in which unsuper-

vised flexible scheduling took place. The advantages of such a concept are shown

in the superior HIMI-strategy, but on the downside, this concept backfired with the

SHTH-strategy. Subsequently, no meaningful statement can be made regarding the

flexible scheduling.

Most importantly, this thesis demonstrates that establishing a shared charging col-

lective is, indeed, possible. In particular, all matched groups exceeded the Random

Group except for Matched Group E and Matched Group F. These two Matched

Groups were created by forcing small clusters in the matching process. This means

in context that 5.99% of all households have no characteristics that are suitable

to be matched and therefore, they perform worse than a randomly selected group.

However, the Matched Group F, with its high mileage drivers, has a lower occu-

pancy along a lower amount of switching charging plugs unattended while simulta-

neously covering the same mileage as the Random Group under the FIFS-strategy

and HIMI-strategy. Therefore, it is clarified that the matching of the majority of

driving behaviors is, in fact, more advantageous and results in better coverage of

mileage along with a more efficient usage of the wallbox. Additionally, hard-to-

match households result in a more efficient usage of the wallbox and fewer events

of switching the plug unattended, which further underlines the beneficial properties

of the matching. Furthermore, a real-world implementation in the aspect of the

achievable size of the charging collective could increase the financial incentive even
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more and it is probably worth the effort to be implemented. To answer the last

research question, the Matched Group B achieved to cover 90% of their mileage up

to a charging collective that contains 15 households. This astonishingly high num-

ber, along with the ability to redefine the matching algorithm, underlines the great

opportunity of identifying and matching driving behaviors.

Apart from these remarkable results emerged some other unexpected findings. The

first is the concerning similar driving behavior of the two largest clusters discovered

in the clustering. The concerns about the two clusters, Cluster1 and Cluster4, are

diminished by the extraordinary performance in their beneficial 134-combination.

Thus, Cluster1 and Cluster4 do not inhibit each other. Instead they need each other

to perform extraordinary with the complementary properties of Cluster3. This also

applies to Cluster2, which is the third-largest cluster.

As anticipated, the matched groups resulted in different performances. It is thought

that the maximal reached standard deviation in the matching process within the

set limits is linked to the performance of the groups. In general, matched groups

with a low standard deviation performed better. Only matched groups below a

standard deviation of 36.33km inherit the superior coverage of mileage. Nonetheless,

Matched Group E does not follow this plausible interpretation with its only slightly

higher standard deviation of 38.61km. In addition, Matched Group E performs

far worse than the expected poor performance of Matched Group F, with by far

the highest standard deviation. Above all, it poorly performs and falls beneath the

Random Group. Thus, the Matched Group E is by far the worst-performing matched

group across all charging strategies. Finding the root of this exceptional finding is

essential to understanding the relationship between a low standard deviation and

good performance in the shared charging collective. First, it is essential to note the

overall poor performance of the Matched Group E. Particularly, the Matched Group

E under the FIFS-strategy and HIMI-strategy crossed the benchmark at a group size

of 6 households, while the SHTH-strategy did not even achieve a 90% coverage of

mileage. Second, the Matched Group consists exactly of two clusters. These are high

frequent commuters (Cluster1) and high mileage drivers on weekends (Cluster5), in

which Cluster1 takes 85, 7% of shares. The root of the unexplained bad performance

is found in the properties of these two clusters. In the examination of those, Cluster1

has the second shortest Timehome with only a bit more than half a day for charging

events. Considering the high share of Cluster1, it could be interpreted that the

cause of the poor coverage of mileage roots from two causes. The first is that drivers

from Cluster1 have a very short Timehome and thus simply have fewer options to

charge their EVs. The second cause for this is arguably the high share of only one

cluster, which on top is Cluster1 which contains high frequent commuters. Hence

why, the piling of the same driving behaviors is probably the reason. In particular,
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the same average driving behavior results in nearly identical scheduled charging

slots, which therefore create demand peaks. Altogether, the few temporal limited

charging slots are additionally occupied very fast through similar arrivals times.

That would also explain the remarkable high occupancy at smaller group sizes.

This is obviously a weak spot of the matching algorithm, which could be improved

by matching drivers individually and considering their arrival and departure times.

In total, two interdependent interpretations can be drawn from the results. Hence, a

low standard deviation is possibly linked to a superior coverage of mileage and more

efficient use of the wallbox from the charging collective in comparison to charging

collectives with a higher standard deviation, when the group’s heterogeneity in their

driving behavior is additionally reached to some extent.

Alongside the testing of the different matched groups, some similarities in the same

charging strategy were discovered. The question arises why these similarities are

often discovered in great performing groups. This leads to begin with the charging

strategy FIFS, in which Matched Group A, B, C, D and G have very similar pro-

gressions. The FIFS-strategy shows the uninfluenced scheduling of charging slots

according to Flath et al. (2012). Nevertheless, this would mean that these groups

have nearly identical charging behaviors in their uninfluenced natural form. This

possibly originates from the dominant Cluster1, Cluster3 and Cluster4 combinations

that are very prominent in these groups. The minor differences in their performance

are most likely linked to other smaller shares within the matched groups. Further-

more, the groups in which the 134-combination dominates have the best coverage

of mileage under the FIFS-strategy. Thus it is concluded that the combination

of having a high frequent commuter with medium mileage (Cluster1), a weekend

leisure driver with medium mileage (Cluster3), along a frequent local errands driver

(cluster4) is perhaps a superior collective. In fact, it can cover 90% of their needed

mileage up to a group size of nine households under the FIFS-strategy. This finding

traces the curve to the matching, in which the 134-combination is predominately

created. Hence, the matching algorithm pursues the goal of having beneficially

matched groups.

Other similarities in the FIFS-strategy have Matched Group F and the Random

Group. They both have very similar properties in covering mileage. This would

mean that Matched Group F, with its shares, resembles the randomly selected

groups. Especially, a high share of a weekend leisure driver (Cluster3) alongside

smaller shares of a high frequent commuter (Cluster1) and a very small share of

a high mileage driver (Cluster6) represent the Random Group in covering mileage

under the FIFS-strategy the best. This similarity is maybe caused by the combined

characteristics of the said clusters, which are probably similar to the mean of the

random groups. Nonetheless, this is not transferable to the charging behavior, in
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which the Matched Group F has a lower occupancy of the wallbox and a smaller

quantity of switching while covering the same mileage.

It is continued with the discovered similarities in the superior HIMI-strategy. This

strategy proved its worth and should be implemented. However, the actual deter-

mination of mileage in a real-world scenario needs time. Furthermore, the HIMI-

strategy achieved to reach the maximum possible group size of 15 households through

the Matched Group B and answered the last research question. The prioritising of

individuals with a higher mileage increases their performance and the performance

of all other groups. Simultaneously, some unexpected findings are present. The

mentioned sudden fall in covering mileage from Matched Group A at a group size

of 9 households is one of them. Besides that, Matched Group A only differs from

Matched Group B in the higher share of the local workday commuter (Cluster2)

and a lower share of the weekend leisure driver (Cluster3). However, it is hard to

make sense of the afterward identical coverage of mileage at a group size of 12 from

the Matched Group A. The only possible interpretation is that upon a group size of

12 households, the different amounts of the shares of Cluster1, 2, 3, 4 reach aston-

ishingly a complimentary working charging collective that performs nearly identical

to a charging collective with 3 households less when the HIMI-strategy is applied.

This implies that unknown beneficial combined characteristics are created in the

matching process through adding cluster centers one by one.

Next is the SHTH-strategy that resulted in very distinguished coverage of mileage

and charging behavior across the groups. Therefore, only Matched Group A, B, C

and D are somewhat alike in covering mileage. They differentiate in their occupancy

of the one shared wallbox, in which Matched Group A and B have a lower overall

occupancy. This could once again be linked to the interpretation that matched

groups result in a better performance, which mainly consists of the 134-combination.

Nonetheless, prioritising individuals by means of their time spent at home is useless

for a charging strategy.

Finally, the human factor has to be considered more. It solely decides whether this

proposed concept works. The matched groups within the shared charging concept

might look very promising on paper. However, the identification and matching in

a real-world implementation need time. It is important to note that the additional

expenditure for walking multiple times per day in especially smaller group sizes to

the wallbox can be unbearable for the participants. Additionally, understanding the

influence of losing mileage is crucial for the further implementation of the shared

charging concept.
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4.2 Implications

This thesis has four major implications for practice and research. To begin with,

the clustering utilized the robust Kmeans-algorithm and provided an unbiased clas-

sification of seven distinguished driving behaviors in the urban areas across Baden-

Würrtemberg, which is evident with similar literature’s methodology (Sodenkamp

et al., 2019). Secondly, new ground was broken with the newly founded matching al-

gorithm. The logical assessment of utilizing the joint standard deviation of multiple

participants as a decision variable to form charging collectives is paying off, consid-

ering the overall remarkable good performance in covering mileage. Thus the work

proposed a new basis for establishing matched groups. This leads to the third point

that complementary driving behavior measured by the standard deviation along with

a certain degree of heterogeneous driving behavior is potentially the core element to

create matched groups. It contributes to the somewhat similar approach of Wang

et al. (2019). This work also shows that heterogeneity in the driving behavior is a

important feature for a shared charging concept in residential areas. Additionally,

the utilization of complementary or heterogeneous driving behavior is also viable in

the residential sector and proposes an alternative solution for residential building

in the ”BienVEnu Project” (Petit and Hennebel, 2019). Most importantly, the ap-

proach from Kostansek (2021) could be redefined to improve the coverage of mileage

from multiple participants. The last implication addresses the crucial missing link.

In literature, the assumption is used without checking the feasibility of sharing a

charging station. This thesis found that sharing a wallbox within a shared charging

collective is, in fact, feasible and does not significantly restrict the mobility needs

of participants. Above all, 90% of the driven mileage of a charging collective is

covered by one standard wallbox up to a group size of 15 households. However, the

charging collective consists of specific driver types and charges under the Highest-

Mileage-strategy. Therefore, this thesis’s significance to elaborate a working shared

charging concept contributes to the multiple found literature that utilizes shared

charging concepts. The answer of the second research question mostly contributes

to the business model of Azarova et al. (2020) that configuring a charging collective

is possible. In particular, this work creates the possibility to split investment along

with operating costs within the charging collective and thus, overcoming some eco-

nomic barriers from Steinhilber et al. (2013) to make electric mobility financially

attractive. Above all, diminishing technical barriers to make charging infrastructure

more accessible for a broader population share in urban areas, in which increasing

charging demand is most present, according to Hardinghaus et al. (2019). This the-

sis constitutes an excellent step towards a better understanding of driving behavior

in the context of establishing shared charging concepts.
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4.3 Limitations and Future Research

To finalize, this part identifies future research areas and acknowledges the occurring

limitations in the presented elaboration. The most important limitations in this re-

search are outlined. Firstly, the whole idea of sharing a wallbox within a collective

only works if people are willing to do so. The high amount of manually switching the

charging plugs and the minimal loss in mobility could create an intolerable obstacle.

No research regarding the acceptance of such a concept was done in advance. Thus,

this stays an unproven assumption. In this concern, it has not been validated in

whether the examined households live nearby and can easily access the shared wall-

box without additional uncomfortable expenditures for the journeys. Subsequently,

one future research could be done to fill these gaps in the here presented thesis.

Secondly, the data set on which all the following results are based on is subject

to the assumption that the driving behavior of owners of conventional cars in fact,

stays exactly the same when driving electric. In addition, driving events over one

week could be considered not entirely suitable to present the mean driving behavior.

These incomplete trips caused limitations in the programmed data preparation for

the clustering. Future research could be done with the same methodology on larger

data sets that examine EVs. Third, the matching process was limited by computing

capacity. This is why the matching process is entirely based upon matching the

cluster centers and not the individual drivers. Thus, the risk of uncertainty in their

mean driving behavior remains present. Consequently, the same matching method-

ology could be implemented with more computing capacity upon driving behaviors

of individuals to have presumably more beneficially matched groups. This is es-

pecially important for real-world implementation, in which the matching algorithm

could be improved by checking the compatibility of arrival and departure times.

Additionally, the issue of the limited computing capacity carries on into simulating

the shared charging concept, which is why the group sizes were examined in steps

of three households up to fifteen households and each group could only be iterated

300times. Hence why, a higher computing capacity could provide more certainty.

Fourth, it is important to understand that every result of the charging simulation

exists in the scope of the tested charging strategies. These charging simulations

are based upon a flawless charging setup, which does not consider a loss in en-

ergy and sets a general assumption about the consumption for all EVs. Hence,

it is most desirable to simulate the application of further charging strategies upon

the matched groups to validate the robustness of the beneficial performance of the

matched groups. Finally, the charging simulation could not inherit every consider-

ation. In this regard, it is not proven that the established comfort factors alongside

the assumed 90% benchmark for the coverage of mileage, do in fact, satisfy the

charging collective in their needs. Apart from this, the charging simulation is based



4 DISCUSSION OF RESULTS 59

upon an ex-post approach, in which already driven mileage is charged. Hence, a gap

in the research remains in the practicability with current technologies and in the

actual orchestration of scheduling charging slots in the presented shared charging

concept for a real-world implementation.
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5 Conclusions and Outlook

The approach to share charging infrastructure opens exciting solution possibilities

to a variety of issues. In particular, this work wants to create a beneficial charging

collective for both the wallbox-container and the urban residents, which have no

possibility to install a private charging station by sharing one wallbox. An additional

element along the research questions is reducing costs of electric mobility by splitting

investment and operating costs of charging infrastructure among a larger charging

collective. The key element to fulfill these goals is the newly established matching

algorithm, which detects and utilizes complementary driving behaviors.

Nonetheless, no literature was found that utilizes the standard deviation of mileage

in the matching algorithm to take advantage of complementary driving behaviors in

a shared charging concept. In this framework, three methodologies were applied to

reach the set goals and answer the three research questions. These methodologies are

the clustering, the matching and the charging simulation. The clustering answered

the first research question.

• Which distinguishable driving behaviors exist in the scope of the data set?

The application of the unbiased Kmeans-algorithm identified seven driving behaviors

along with providing an extensive description of their characteristics.

1. Cluster1: high frequent commuter: with medium mileage

2. Cluster2: local workday commuter: with the shortest mileage

3. Cluster3: weekend free-time trips: with medium mileage

4. Cluster4: frequent local errands: with medium mileage

5. Cluster5: weekend high mileage: with high mileage

6. Cluster6: frequent high mileage: with the highest mileage

7. Cluster7: seldom at home: with medium mileage

The matching algorithm was applied to these, which utilizes the standard deviation

as a decision variable to determine the best suiting complementary partner. This

generated the unexpected dominant cluster combination between Cluster1, Cluster3

and Cluster4.

Lastly, the sharing of one wallbox within the charging collective was simulated for

the matched groups as well as for a randomly selected group. The groups were tested

upon three charging strategies. The first strategy is the First-In-First-Served (FIFS)
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strategy, which points out the unaltered charging behavior of the groups, according

to Flath et al. (2012). In addition to this strategy, two smart charging strategies were

applied, which rely on the sorting of individuals in one charging collective according

to their properties. In detail, these are the Highest-Mileage (HIMI) strategy and

the Shortest-Timehome (SHTH) strategy. Each strategy includes resting times along

with factors to ensure comfort for the wallbox-container or people that live nearby.

The technical feasibility of the selected charging strategies was tested. Hence, they

resulted in different performance indicators upon the groups and responded to the

second research question:

• Is matching of charging collectives more beneficial in terms of occupancy and

covered mileage of a wallbox than randomly chosen collectives?

The identification and the matching of driving behavior proved to perform excep-

tionally well in covering mileage as well as having a lower occupancy of the wallbox

and sometimes fewer amounts of switching charging plugs when no one is around.

The combined characteristics of the described results make the matched groups

considerably more advantageous than the Random Group. The combination of the

outstanding coverage along with the lower occupancy results in a more efficient usage

of the wallbox by the majority of the matched groups. Hence why, the scheduled

charging slots possess fewer idling times and are less fragmented. Therefore, all

matched groups, except for two, have the possibility to share their wallbox within

larger sizes of the charging collective. Simultaneously, enhancing the possibility to

split the cost between more individuals and thus reducing costs within the charging

collectives. Finally, the last research question, stated below, was answered:

• To what extend can a collective of households share a charging station without

influencing their daily driving behavior?

As a consequence of my research to the second question, only the predominant

Matched Group B achieved to cover remarkably more than 90% mileage at a charg-

ing collective size of 15 individual households and one wallbox, under the Highest-

Mileage strategy. This predominant group consists of high frequent commuters,

local workday commuters, weekend free-time trips drivers and frequent local er-

rands drivers. Nonetheless, the charging collective of 15 households covers the same

percentage of mileage as a single EV with a small battery capacity and a simple

private charging solution, as assessed in the research of Greaves et al. (2014).

On the basis of the researched subject, it seems fair to suggest that the potentials

of shared charging concepts need further research. The human factor remains the

sole decider whether the concept of sharing a charging infrastructure is possible.

Particularly, the tight scheduling and the resulting high quantities of switching the
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charging plug could inhibit the adoption of shared charging concepts. An intelligent

wallbox with multiple charging cables that can individually charge already parked

EVs could help to make sharing a wallbox more comfortable and attractive. On

the economic side, the business model presented by Azarova et al. (2020) could be

integrated in addition to creating a financial incentive for participation. Neverthe-

less, the insights provided by this work reveal that identifying driving behavior and

beneficially matching them allows to gives broader access to charging stations in

a straightforward approach. It shows that it is indeed advantageous to share the

unused charging time of privately owned charging stations in order to provide mul-

tiple people with the opportunity to participate in electric mobility. This concept

was researched in local urban areas, which suit electric mobility the best. Hence, a

real-world implementation with the analyzed and matched driving behavior along

with a suiting technical support system is technically viable. Future research could

expand on the explanation and the origin of these beneficial properties by examining

the sequence of how complementary driving behaviors are added to the matching

process. As a final point, the concept of shared charging opportunities may help to

further expand electric mobility and thus support the set climate goals by providing

the base for future research on the technical feasibility of shared charging concepts.

Hence, scientific proof is found that sharing a charging infrastructure within the

presented framework is, in fact, possible and beneficial.
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6 Appendix

Table 6: Normalized euclidean intercluster distances.

Cluster 1 2 3 4 5 6 7

1 0

2 1.7560 0

3 2.0292 1.7169 0

4 1.0523 1.1636 1.4404 0

5 1.4806 1.8035 1.8849 1.3834 0

6 1.6122 1.8771 2.1773 1.4855 1.4360 0

7 1.5431 1.4097 1.8041 1.3586 1.5433 1.7749 0

Table 7: Professions in the clusters.

Cluster 1 2 3 4 5 6 7 SUM

employed 209 58 27 155 23 6 23 501

unemployed 12 6 4 15 2 0 2 41

retired 35 50 10 123 17 0 9 244

trainees 45 4 5 25 4 0 1 84

Table 8: Households in the clusters.

Cluster 1 2 3 4 5 6 7 SUM

singles 46 61 32 91 12 2 18 262

couples 69 26 6 90 13 2 9 215

flat-sharing 10 0 0 2 2 0 0 14

families 25 2 1 14 1 0 0 43

Total 150 89 39 197 28 4 27 534
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Table 9: Purpose of driving events in the clusters.

Cluster 1 2 3 4 5 6 7

work-related 49.42% 34.97% 70.00% 0.2649 0.3082 0.0000 0.4885

errand-related 0.3236 0.4641 0.2000 0.5144 0.3356 0.3750 0.2595

freetime-related 0.1822 0.1863 0.1000 0.2207 0.3562 0.6250 0.2519

Table 10: Timehome/km-Ratio and standard deviation of matched groups

Matched Group A B C D E F G

Standard Deviation[km] 34.77 36.33 16.11 16.11 38.61 163.22 18.76

Timehome/km-Ratio 0.0146 0.0145 0.0154 0.0152 0.0148 0.0165 0.0164
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