Information & Market Engineering - Prof. Dr. Christof Weinhardt

Computational Economics

  • Typ: Vorlesung (V)
  • Lehrstuhl: Fakultät für Wirtschaftswissenschaften
  • Semester: WS 10/11
  • Zeit: 19.10.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof


    26.10.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    02.11.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    09.11.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    16.11.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    23.11.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    30.11.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    07.12.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    14.12.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    21.12.2010
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    11.01.2011
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    18.01.2011
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    25.01.2011
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    01.02.2011
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof

    08.02.2011
    09:45 - 11:15 wöchentlich
    11.40 Raum 221 11.40 Kollegiengebäude am Ehrenhof


  • Dozent: Dr. Simon Caton
    Dr.Rer.Nat. Pradyumn Kumar Shukla
  • SWS: 2
  • LVNr.: 26458
BemerkungenDie Vorlesung wird als interdisziplinäre Lehreinheit des AIFB und des IW angeboten. Daher ist eine Einrechnung der Leistung ENTWEDER in der Informatik ODER in der BWL möglich.
Vortragsspracheunbekannt
Literaturhinweise* Amman, H., Kendrick, D., Rust, J., Handbook of Computational Economics. Volume 1, Handbooks in Economics 13, Elsevier, 1996. * Marimon, R., Scott, A., Computational Methods for the Study of Dynamic Economies. Oxford University Press, 1999. * Gilbert, N., Troitzsch, K., Simulation for the Social Scientist. Open University Press, 1999. * Tesfatsion, Judd (eds.): Handbook of Computational Economics: Agent - Based Computational Economics. Elsevier, 2006
Kommentar

Die Untersuchung komplexer ökonomischer Probleme unter Anwendung klassischer analytischer Methoden bedeutet für gewöhnlich, eine große Zahl an vereinfachenden Annahmen zu treffen. Z.B. dass sich Agenten rational oder homogen verhalten. In den vergangenen Jahren hat die stark zunehmende Verfügbarkeit von Rechenkapazität ein neues Gebiet der ökonomischen Forschung hervorgebracht: Die Computational Economics. Innerhalb dieser Disziplin werden rechnergestützte Simulationsmodelle zum Einsatz gebracht um komplexe ökonomische Systeme zu verstehen und zu analysieren. Folglich wird eine künstliche Welt geschaffen, die alle relevanten Aspekte des betrachteten Problems beinhaltet. Hierbei wird versucht, sowohl endogene als auch exogene Faktoren mitzumodellieren. Nachdem ein solches Modell erstellt wurde kann es im Folgenden in aller Tiefe analysiert werden. Solch ein Modell kann zum Durchspielen von unterschiedlichen Szenarien oder als virtuelles Testbett zum Verifizieren oder Falsifizieren von Testhypothesen dienen, da jeder Aspekt des Modells unter der Kontrolle des Forschers steht, der das Modell erstellt und folglich beliebig geändert werden kann. Die Vorlesung deckt eine große Bandbreite von Themen ab. Hierbei wird insbesondere auf eine Anzahl von Simulationsparadigmen (mit Schwerpunkt der agentenbasierten Simulation), die künstliche Intelligenz, Modelle für lernende Agenten und die systematische Analyse eingegangen. In den Übungen werden die Studierenden in kleinen Gruppen arbeiten und Simulationstools nutzen, um Probleme aus der Netzwerk- und Internetökonomie zu modellieren. Erfolgreiche Teilnahme an den Übungen verbessert die Note.