Artificial Intelligence in Service Systems - Applications in Computer Vision
- Type: Vorlesung (V)
- Semester: SS 2023
-
Time:
Fr 21.04.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 28.04.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 05.05.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 12.05.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 19.05.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 26.05.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 09.06.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 16.06.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 23.06.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 30.06.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 07.07.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 14.07.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 21.07.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
Fr 28.07.2023
08:00 - 13:00, wöchentlich
05.20 1C-03
05.20 Kollegiengebäude am Kronenplatz
-
Lecturer:
Prof. Dr. Gerhard Satzger
Björn Schmitz - SWS: 3
- Lv-No.: 2595501
- Information: Präsenz
Inhalt | ---We renamed this course from "Service Analytics A" to "Artificial Intelligence in Service Systems - Applications in Computer Vision --- This course teaches students how to apply machine learning concepts to develop predictive models that form the basis of many innovative service offerings and business models today. Using a selected use case each term, students learn the foundations of selected algorithms and development frameworks and apply them to build a functioning prototype of an analytics-based service. Students will become proficient in writing code in Python to implement a data science use case over the course period.
Description Data-driven services have become a key differentiator for many companies. Their development is based on the increasing availability of structured and unstructured data and their analysis through methods from data science and machine learning. Examples comprise highly innovative service offerings based on technologies such as natural language processing, computer vision or reinforcement learning. Using a selected use case, this lecture will teach students how to develop analytics-based services in an applied setting. We teach the theoretical foundations of selected machine learning algorithms (e.g., convolutional neural networks) and development concepts (e.g., developing modeling, training, inference pipelines) and teach how to apply these concepts to build a functioning prototype of an analytics-based service (e.g., inference running on a device). During the course, students will work in small groups to apply the learned concepts in the programming language Python using packages such as Keras, Tensorflow or Scikit-Learn. For more information on recent projects as part of the course, please visit the website of our lecture: https://www.aiss-cv.com.
Recommendations The course is aimed at students in the Master's program with basic knowledge in statistics and applied programming in Python. Knowledge from the lecture Artificial Intelligence in Service Systems may be beneficial.
Additional information The lecture will be held as part of 7 blocks within the summer semester. Due to the practical group sessions in the course, the number of participants is limited. The official application period in the WiWi portal will open mid of February. Please apply here until April, 3rd: https://go.wiwi.kit.edu/aiss-cv. The course will be held mainly online via Zoom. For interim and final presentation, we will meet in person in building 05.20, room 1C-03. Further information on the dates of interim and final presentation will be announced via Ilias and mail. |
Vortragssprache | Englisch |
Literaturhinweise |
|